Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/41830 |
Summary: | Ultrafast High-temperature Sintering (UHS) is a novel non-conventional sintering technology, with great potential for application in ceramic processing. One of its key characteristics is the use of heating rates estimated above 10³ °C/min, which can affect the structure and microstructure of the ceramics and reduce the necessary processing time. In this work, the UHS technology was applied and studied for the first time for processing of the perovskite type K₀.₅Na₀.₅NbO₃, KNN, an important ferroelectric material and a promising lead- free substitute for piezoelectrics in the market. The main sintering drawbacks of KNN include poor densification and stoichiometric control, caused by the necessary conditions of the sintering stage. This R&D master dissertation has a dual objective. Firstly, it seeks to contribute to the advancement in the implementation of a novel and potential alternative technology for the sintering of ceramic materials, particularly focusing on electroceramics. Secondly, the dissertation aims to explore alternative strategies for the sintering of critical lead-free ferroelectrics which face inherent sintering limitations. Through these dual avenues, this research endeavours to address challenges in the sintering process and pave way for innovative approaches in the field of electroceramic materials. To achieve these objectives, a UHS equipment was constructed, subjected to systematic testing, and optimized in terms of operational conditions. This process encompassed a comprehensive characterisation of the heating element, the carbon felt, to assess its structure, microstructure, and thermal stability under varying atmospheric conditions. This approach ensured the establishment of an effective UHS system, as the basis of this work for successful experimentation and material processing. KNN powders were synthesized and characterised regarding their crystal structure, particle morphology and size, thermal stability, and shrinkage. The powders were used to obtain bulk ceramics using various UHS conditions and conventional sintering, for comparison purposes. Varying the UHS time and current parameters allowed for the construction of a processing map, enabling the identification of optimal conditions for the application of UHS in KNN. Consequently, ceramics sintered using UHS with 23 A for 60 s, 20 A for 90 s or with a multistep regime, with equivalent densities, underwent thorough analysis of structure, microstructure, chemical composition, mechanical behaviour and electrical properties. KNN ceramics processed by UHS present fine microstructures, which impacted their electrical behaviour, showing equivalent performance to the conventional in most situations. With this investigation, correlations were established between the UHS processing of KNN and the final properties. Being an initial and pioneering investigation in the context of KNN by UHS, there are various aspects that require further improvement and more systematic exploration. These include enhancing the density of bulk materials, researching chemical composition variations, and optimizing the thermal annealing process. Despite the need for this improvement, it is noteworthy that KNN ceramics were successfully produced by UHS, showcasing significant reductions in total processing time while demonstrating comparable properties. This achievement represents a unique contribution not yet documented in the existing literature. |
id |
RCAP_1c2faad435d9749618a70f8e6b2c89c6 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41830 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate productionUltrafast high-temperature sinteringAlternative sinteringPotassium-sodium niobateElectroceramicsLead-free piezoelectricsFerroelectricsUltrafast High-temperature Sintering (UHS) is a novel non-conventional sintering technology, with great potential for application in ceramic processing. One of its key characteristics is the use of heating rates estimated above 10³ °C/min, which can affect the structure and microstructure of the ceramics and reduce the necessary processing time. In this work, the UHS technology was applied and studied for the first time for processing of the perovskite type K₀.₅Na₀.₅NbO₃, KNN, an important ferroelectric material and a promising lead- free substitute for piezoelectrics in the market. The main sintering drawbacks of KNN include poor densification and stoichiometric control, caused by the necessary conditions of the sintering stage. This R&D master dissertation has a dual objective. Firstly, it seeks to contribute to the advancement in the implementation of a novel and potential alternative technology for the sintering of ceramic materials, particularly focusing on electroceramics. Secondly, the dissertation aims to explore alternative strategies for the sintering of critical lead-free ferroelectrics which face inherent sintering limitations. Through these dual avenues, this research endeavours to address challenges in the sintering process and pave way for innovative approaches in the field of electroceramic materials. To achieve these objectives, a UHS equipment was constructed, subjected to systematic testing, and optimized in terms of operational conditions. This process encompassed a comprehensive characterisation of the heating element, the carbon felt, to assess its structure, microstructure, and thermal stability under varying atmospheric conditions. This approach ensured the establishment of an effective UHS system, as the basis of this work for successful experimentation and material processing. KNN powders were synthesized and characterised regarding their crystal structure, particle morphology and size, thermal stability, and shrinkage. The powders were used to obtain bulk ceramics using various UHS conditions and conventional sintering, for comparison purposes. Varying the UHS time and current parameters allowed for the construction of a processing map, enabling the identification of optimal conditions for the application of UHS in KNN. Consequently, ceramics sintered using UHS with 23 A for 60 s, 20 A for 90 s or with a multistep regime, with equivalent densities, underwent thorough analysis of structure, microstructure, chemical composition, mechanical behaviour and electrical properties. KNN ceramics processed by UHS present fine microstructures, which impacted their electrical behaviour, showing equivalent performance to the conventional in most situations. With this investigation, correlations were established between the UHS processing of KNN and the final properties. Being an initial and pioneering investigation in the context of KNN by UHS, there are various aspects that require further improvement and more systematic exploration. These include enhancing the density of bulk materials, researching chemical composition variations, and optimizing the thermal annealing process. Despite the need for this improvement, it is noteworthy that KNN ceramics were successfully produced by UHS, showcasing significant reductions in total processing time while demonstrating comparable properties. This achievement represents a unique contribution not yet documented in the existing literature.Sinterização ultrarrápida a altas temperaturas (UHS) é uma tecnologia inovadora de sinterização não convencional, com elevado potencial para aplicação no processamento de materiais cerâmicos. Uma das principais caraterísticas é o uso de taxas de aquecimento estimadas acima de 10³ °C/min, que pode afetar a estrutura e microestrutura dos cerâmicos e permite uma redução do tempo de processamento. Neste trabalho, a tecnologia UHS foi aplicada e estudada pela primeira vez no processamento da perovesquite do tipo K₀.₅Na₀.₅NbO₃, KNN, um material ferroelétrico importante e uma alternativa isenta de chumbo promissora para o mercado dos piezoelétricos. Os principais obstáculos à sinterização do KNN incluem uma baixa densificação e um mau controlo estequiométrico, causados pelas condições necessárias à própria etapa. Esta dissertação de mestrado em I&D tem um objetivo duplo. Em primeiro lugar, pretende contribuir para o avanço na implementação de uma técnica inovadora e alternativa, com potencial para aplicação na sinterização de materiais cerâmicos, nomeadamente eletrocerâmicos. Em segundo lugar, a dissertação visa explorar estratégias alternativas para a sinterização de ferroelétricos críticos isentos de chumbo que enfrentam limitações inerentes à sinterização. Através destas duas vias, esta investigação pretende abordar desafios associados ao processo de sinterização e abrir caminho para oportunidades inovadoras na área dos materiais eletrocerâmicos. Para atingir estes objetivos, um equipamento de UHS foi construído, sujeito a testes sistemáticos, e otimizado em termos das condições de processamento. Este processo englobou uma caraterização compreensiva do material de aquecimento, o feltro de carbono, para averiguar a sua estrutura, microestrutura e estabilidade térmica sob diferentes condições atmosféricas. Esta abordagem garantiu a criação de um sistema de UHS eficaz, que constituiu a base deste trabalho para a realização de experiências e processamento de materiais com sucesso. Pós de KNN foram sintetizados e caraterizados quanto à sua estrutura cristalográfica, morfologia e tamanho de partícula, estabilidade térmica e retração. Os pós foram utilizados para a obtenção de cerâmicos monolíticos com diversas condições de UHS e de sinterização convencional, para comparação. Variando o tempo e corrente aplicados em UHS, foi possível a construção de um mapa de processamento, permitindo a identificação de condições otimizadas para a aplicação de UHS em KNN. Consequentemente, cerâmicos sinterizados por UHS com 23 A em 60 s, 20 A em 90 s, ou por um regime multistep, com densidades equivalentes, sofreram uma análise estrutural, microestrutural, química e mecânica e elétrica. Cerâmicos KNN processados por UHS apresentam microestruturas finas, com impacto no seu comportamento elétrico, mostrando um desempenho equivalente ao convencional na maioria das situações. Com desta investigação, foram estabelecidas correlações entre o processamento de KNN por UHS e as suas propriedades finais. Sendo esta uma investigação preliminar e pioneira no contexto de KNN por UHS, vários aspetos necessitam ainda de otimização e de uma análise mais sistemática, incluindo a densidade dos materiais, o estudo de variações na composição química e a otimização do processo de tratamento térmico. Apesar da necessidade de otimização, é importante salientar que cerâmicos KNN foram produzidos por UHS com sucesso, demonstrando uma redução no tempo de processamento associada a propriedades comparáveis. Esta conquista representa uma contribuição única, ainda por reportar na literatura existente.2026-03-08T00:00:00Z2024-03-08T00:00:00Z2024-03-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41830engMiranda, João Francisco Lopesinfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-13T01:46:26Zoai:ria.ua.pt:10773/41830Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:35:56.037240Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production |
title |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production |
spellingShingle |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production Miranda, João Francisco Lopes Ultrafast high-temperature sintering Alternative sintering Potassium-sodium niobate Electroceramics Lead-free piezoelectrics Ferroelectrics |
title_short |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production |
title_full |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production |
title_fullStr |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production |
title_full_unstemmed |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production |
title_sort |
Ultrafast high-temperature sintering as an alternative technique for potassium-sodium niobate production |
author |
Miranda, João Francisco Lopes |
author_facet |
Miranda, João Francisco Lopes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Miranda, João Francisco Lopes |
dc.subject.por.fl_str_mv |
Ultrafast high-temperature sintering Alternative sintering Potassium-sodium niobate Electroceramics Lead-free piezoelectrics Ferroelectrics |
topic |
Ultrafast high-temperature sintering Alternative sintering Potassium-sodium niobate Electroceramics Lead-free piezoelectrics Ferroelectrics |
description |
Ultrafast High-temperature Sintering (UHS) is a novel non-conventional sintering technology, with great potential for application in ceramic processing. One of its key characteristics is the use of heating rates estimated above 10³ °C/min, which can affect the structure and microstructure of the ceramics and reduce the necessary processing time. In this work, the UHS technology was applied and studied for the first time for processing of the perovskite type K₀.₅Na₀.₅NbO₃, KNN, an important ferroelectric material and a promising lead- free substitute for piezoelectrics in the market. The main sintering drawbacks of KNN include poor densification and stoichiometric control, caused by the necessary conditions of the sintering stage. This R&D master dissertation has a dual objective. Firstly, it seeks to contribute to the advancement in the implementation of a novel and potential alternative technology for the sintering of ceramic materials, particularly focusing on electroceramics. Secondly, the dissertation aims to explore alternative strategies for the sintering of critical lead-free ferroelectrics which face inherent sintering limitations. Through these dual avenues, this research endeavours to address challenges in the sintering process and pave way for innovative approaches in the field of electroceramic materials. To achieve these objectives, a UHS equipment was constructed, subjected to systematic testing, and optimized in terms of operational conditions. This process encompassed a comprehensive characterisation of the heating element, the carbon felt, to assess its structure, microstructure, and thermal stability under varying atmospheric conditions. This approach ensured the establishment of an effective UHS system, as the basis of this work for successful experimentation and material processing. KNN powders were synthesized and characterised regarding their crystal structure, particle morphology and size, thermal stability, and shrinkage. The powders were used to obtain bulk ceramics using various UHS conditions and conventional sintering, for comparison purposes. Varying the UHS time and current parameters allowed for the construction of a processing map, enabling the identification of optimal conditions for the application of UHS in KNN. Consequently, ceramics sintered using UHS with 23 A for 60 s, 20 A for 90 s or with a multistep regime, with equivalent densities, underwent thorough analysis of structure, microstructure, chemical composition, mechanical behaviour and electrical properties. KNN ceramics processed by UHS present fine microstructures, which impacted their electrical behaviour, showing equivalent performance to the conventional in most situations. With this investigation, correlations were established between the UHS processing of KNN and the final properties. Being an initial and pioneering investigation in the context of KNN by UHS, there are various aspects that require further improvement and more systematic exploration. These include enhancing the density of bulk materials, researching chemical composition variations, and optimizing the thermal annealing process. Despite the need for this improvement, it is noteworthy that KNN ceramics were successfully produced by UHS, showcasing significant reductions in total processing time while demonstrating comparable properties. This achievement represents a unique contribution not yet documented in the existing literature. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-08T00:00:00Z 2024-03-08 2026-03-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41830 |
url |
http://hdl.handle.net/10773/41830 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596046656143360 |