Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2011 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/8279 |
Resumo: | Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. |
| id |
RCAP_1c062f2dae7e1ee9d5b2fbcb03176082 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/8279 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Distributed processing of large remote sensing images using MapReduce - A case of Edge DetectionRemote sensingSatellite datasetsComputing modelscomputing technologiesMapReduceLaplacianDissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Advances in sensor technology and their ever increasing repositories of the collected data are revolutionizing the mechanisms remotely sensed data are collected, stored and processed. This exponential growth of data archives and the increasing user’s demand for real-and near-real time remote sensing data products has pressurized remote sensing service providers to deliver the required services. The remote sensing community has recognized the challenge in processing large and complex satellite datasets to derive customized products. To address this high demand in computational resources, several efforts have been made in the past few years towards incorporation of high-performance computing models in remote sensing data collection, management and analysis. This study adds an impetus to these efforts by introducing the recent advancements in distributed computing technologies, MapReduce programming paradigm, to the area of remote sensing. The MapReduce model which is developed by Google Inc. encapsulates the efforts of distributed computing in a highly simplified single library. This simple but powerful programming model can provide us distributed environment without having deep knowledge of parallel programming. This thesis presents a MapReduce based processing of large satellite images a use case scenario of edge detection methods. Deriving from the conceptual massive remote sensing image processing applications, a prototype of edge detection methods was implemented on MapReduce framework using its open-source implementation, the Apache Hadoop environment. The experiences of the implementation of the MapReduce model of Sobel, Laplacian, and Canny edge detection methods are presented. This thesis also presents the results of the evaluation the effect of parallelization using MapReduce on the quality of the output and the execution time performance tests conducted based on various performance metrics. The MapReduce algorithms were executed on a test environment on heterogeneous cluster that supports the Apache Hadoop open-source software. The successful implementation of the MapReduce algorithms on a distributed environment demonstrates that MapReduce has a great potential for scaling large-scale remotely sensed images processing and perform more complex geospatial problems.Foerster, TheodorHenneböhl, KatharinaCaetano, Mário Sílvio Rochinha de AndradeRUNTesfamariam, Ermias Beyene2012-12-03T15:46:21Z2011-02-072011-02-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/8279enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:11:54Zoai:run.unl.pt:10362/8279Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:42:58.189496Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection |
| title |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection |
| spellingShingle |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection Tesfamariam, Ermias Beyene Remote sensing Satellite datasets Computing models computing technologies MapReduce Laplacian |
| title_short |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection |
| title_full |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection |
| title_fullStr |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection |
| title_full_unstemmed |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection |
| title_sort |
Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection |
| author |
Tesfamariam, Ermias Beyene |
| author_facet |
Tesfamariam, Ermias Beyene |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Foerster, Theodor Henneböhl, Katharina Caetano, Mário Sílvio Rochinha de Andrade RUN |
| dc.contributor.author.fl_str_mv |
Tesfamariam, Ermias Beyene |
| dc.subject.por.fl_str_mv |
Remote sensing Satellite datasets Computing models computing technologies MapReduce Laplacian |
| topic |
Remote sensing Satellite datasets Computing models computing technologies MapReduce Laplacian |
| description |
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-02-07 2011-02-07T00:00:00Z 2012-12-03T15:46:21Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/8279 |
| url |
http://hdl.handle.net/10362/8279 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596136021032960 |