Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/44969 |
Summary: | Anxiety is a global and worldwide concern, being reported as one of the scourges of the 21st century. The physiological response associated with anxiety is related to variations in the central and peripheral nervous system, whereas cardiovascular assessment is reported to be one of the potentially most informative areas in this domain. In particular, Heart rate variability (HRV) is one of the cardiovascular parameters widely studied as an anxiety biomarker. Ensuing, the ability to derive this biomarker from the photoplethysmography (PPG) signal acquired using a smartphone device would provide an easy and autonomous anxiety screening option, this is the case of the HOLI app by NEVARO. Notwithstanding, such mobile technologies present an insufficient validation methodology which is a major concern as it could lead to inappropriate screening. In this study, it was validated HOLI’s anxiety biomarking system through a multiphase process. First, due to its intended non-supervised acquisition, it was developed a novel PPG signal qualifier based on an adaptive threshold using the area of the blood volume pulse to mitigate poor signals. Furthermore, test results on a public database showed high sensitivities for binary classification, between noisy and clean signals, and the algorithm’s ability to identify noisy pulses accurately. In the next validation stage, a protocol was implemented on 47 subjects, within two locations, comprising the collection of the PPG and electrocardiography (ECG) signals during three states: Baseline, Physical Activation, and Psychological Activation (through emotion-inducing videos). The statistical analysis on HOLI’s cardiac estimation accuracy, showed large correlation and agreement values, except for the Physical Activation epoch, which presented high levels of motion artifacts. Concerning HRV anxiety biomarking functioning, the conjunction of statistical analysis with unsupervised learning methods demonstrated significance and expected behavior when using selected time and frequency domain HRV metrics for classifying anxiety subjectively. Further, these results support and extend past literature on the relationship between HRV and anxiety by introducing a novel HRV detection system with an embedded signal qualifier. |
id |
RCAP_1b5e1d96711f1fcd739abff119be7450 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/44969 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarkerPhotoplethysmogramHeart rate variabilityAnxietyMental healthBiomarkerDigital healthAnxiety is a global and worldwide concern, being reported as one of the scourges of the 21st century. The physiological response associated with anxiety is related to variations in the central and peripheral nervous system, whereas cardiovascular assessment is reported to be one of the potentially most informative areas in this domain. In particular, Heart rate variability (HRV) is one of the cardiovascular parameters widely studied as an anxiety biomarker. Ensuing, the ability to derive this biomarker from the photoplethysmography (PPG) signal acquired using a smartphone device would provide an easy and autonomous anxiety screening option, this is the case of the HOLI app by NEVARO. Notwithstanding, such mobile technologies present an insufficient validation methodology which is a major concern as it could lead to inappropriate screening. In this study, it was validated HOLI’s anxiety biomarking system through a multiphase process. First, due to its intended non-supervised acquisition, it was developed a novel PPG signal qualifier based on an adaptive threshold using the area of the blood volume pulse to mitigate poor signals. Furthermore, test results on a public database showed high sensitivities for binary classification, between noisy and clean signals, and the algorithm’s ability to identify noisy pulses accurately. In the next validation stage, a protocol was implemented on 47 subjects, within two locations, comprising the collection of the PPG and electrocardiography (ECG) signals during three states: Baseline, Physical Activation, and Psychological Activation (through emotion-inducing videos). The statistical analysis on HOLI’s cardiac estimation accuracy, showed large correlation and agreement values, except for the Physical Activation epoch, which presented high levels of motion artifacts. Concerning HRV anxiety biomarking functioning, the conjunction of statistical analysis with unsupervised learning methods demonstrated significance and expected behavior when using selected time and frequency domain HRV metrics for classifying anxiety subjectively. Further, these results support and extend past literature on the relationship between HRV and anxiety by introducing a novel HRV detection system with an embedded signal qualifier.Atualmente, a ansiedade é uma preocupação global e mundial, sendo reportada como um dos flagelos do século XXI. A resposta fisiológica associada à ansiedade está relacionada com alterações no sistema nervoso central e periférico, sendo reportado que a avaliação cardiovascular é uma das áreas potencialmente mais informativas neste domínio. Em particular, a variabilidade da frequência cardíaca (HRV), que é um dos parâmetros amplamente estudado como biomarcador de ansiedade. Subsequentemente, a capacidade de derivar este biomarcador a partir do sinal de fotopletismografia (PPG) adquirido através de um dispositivo smartphone proporcionaria uma opção de rastreio da ansiedade fácil e autónoma, como é o caso da aplicação HOLI desenvolvida pela NEVARO. Não obstante, estas tecnologias móveis apresentam uma metodologia de validação insuficiente, o que constitui uma grande preocupação, dado que poderá induzir rastreios inadequados. Neste estudo, o sistema HOLI de biomarcação de ansiedade foi validado através de um processo multifásico. Em primeiro lugar, devido à sua aquisição não supervisionada, foi desenvolvido um qualificador de sinais de PPG baseado num threshold adaptativo que utiliza a área do pulso de volume de sangue para discriminar sinais de baixa qualidade. Os resultados de testagem numa base de dados pública demonstraram sensibilidades elevadas para a classificação binária, entre sinais ruidosos e limpos, e a capacidade do algoritmo para identificar com precisão os pulsos ruidosos. Na fase seguinte de validação, foi implementado um protocolo em 47 participantes, em dois locais, compreendendo a recolha dos sinais de PPG e eletrocardiograma (ECG) durante três estados: Baseline, Ativação Física e Ativação Psicológica (através de vídeos indutores de emoções). A análise estatística sobre a precisão da estimativa cardíaca derivada a partir da HOLI, mostrou grandes valores de correlação e concordância, exceto para a época de Ativação Física, onde demonstrou elevados níveis de artefactos de movimento. Relativamente ao funcionamento da biomarcação de ansiedade a partir do HRV, a conjugação da análise estatística com métodos de aprendizagem não supervisionados demonstrou significância e o comportamento esperado na utilização de métricas selecionadas de HRV no domínio do tempo e da frequência para classificar subjetivamente a ansiedade. Ademais, estes resultados apoiam e alargam a literatura anterior sobre a relação entre o HRV e a ansiedade, introduzindo um novo sistema de deteção com um qualificador de sinal incorporado.2026-07-12T00:00:00Z2024-07-09T00:00:00Z2024-07-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/44969engAlmeida, Ana Carolina Henriquesinfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-12T01:47:01Zoai:ria.ua.pt:10773/44969Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:14:18.272337Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker |
title |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker |
spellingShingle |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker Almeida, Ana Carolina Henriques Photoplethysmogram Heart rate variability Anxiety Mental health Biomarker Digital health |
title_short |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker |
title_full |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker |
title_fullStr |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker |
title_full_unstemmed |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker |
title_sort |
Decoding anxiety through your fingertip: mobile photoplethysmography-derived heart rate variability as an anxiety biomarker |
author |
Almeida, Ana Carolina Henriques |
author_facet |
Almeida, Ana Carolina Henriques |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Ana Carolina Henriques |
dc.subject.por.fl_str_mv |
Photoplethysmogram Heart rate variability Anxiety Mental health Biomarker Digital health |
topic |
Photoplethysmogram Heart rate variability Anxiety Mental health Biomarker Digital health |
description |
Anxiety is a global and worldwide concern, being reported as one of the scourges of the 21st century. The physiological response associated with anxiety is related to variations in the central and peripheral nervous system, whereas cardiovascular assessment is reported to be one of the potentially most informative areas in this domain. In particular, Heart rate variability (HRV) is one of the cardiovascular parameters widely studied as an anxiety biomarker. Ensuing, the ability to derive this biomarker from the photoplethysmography (PPG) signal acquired using a smartphone device would provide an easy and autonomous anxiety screening option, this is the case of the HOLI app by NEVARO. Notwithstanding, such mobile technologies present an insufficient validation methodology which is a major concern as it could lead to inappropriate screening. In this study, it was validated HOLI’s anxiety biomarking system through a multiphase process. First, due to its intended non-supervised acquisition, it was developed a novel PPG signal qualifier based on an adaptive threshold using the area of the blood volume pulse to mitigate poor signals. Furthermore, test results on a public database showed high sensitivities for binary classification, between noisy and clean signals, and the algorithm’s ability to identify noisy pulses accurately. In the next validation stage, a protocol was implemented on 47 subjects, within two locations, comprising the collection of the PPG and electrocardiography (ECG) signals during three states: Baseline, Physical Activation, and Psychological Activation (through emotion-inducing videos). The statistical analysis on HOLI’s cardiac estimation accuracy, showed large correlation and agreement values, except for the Physical Activation epoch, which presented high levels of motion artifacts. Concerning HRV anxiety biomarking functioning, the conjunction of statistical analysis with unsupervised learning methods demonstrated significance and expected behavior when using selected time and frequency domain HRV metrics for classifying anxiety subjectively. Further, these results support and extend past literature on the relationship between HRV and anxiety by introducing a novel HRV detection system with an embedded signal qualifier. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-09T00:00:00Z 2024-07-09 2026-07-12T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/44969 |
url |
http://hdl.handle.net/10773/44969 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602926316093440 |