On the formalization of some results of context-free language theory

Detalhes bibliográficos
Autor(a) principal: Midena Ramos, Marcus Vinicius
Data de Publicação: 2016
Outros Autores: de Queiroz, Ruy J. G. B., Moreira, Nelma, Almeida, José Bacelar
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/1822/50463
Resumo: This work describes a formalization effort, using the Coq proof assistant, of fundamental results related to the classical theory of context-free grammars and languages. These include closure properties (union, concatenation and Kleene star), grammar simplification (elimination of useless symbols, inaccessible symbols, empty rules and unit rules), the existence of a Chomsky Normal Form for context-free grammars and the Pumping Lemma for context-free languages. The result is an important set of libraries covering the main results of context-free language theory, with more than 500 lemmas and theorems fully proved and checked. This is probably the most comprehensive formalization of the classical context-free language theory in the Coq proof assistant done to the present date, and includes the important result that is the formalization of the Pumping Lemma for context-free languages.
id RCAP_1af00559fb3de93fba3c037f08e2d0e9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/50463
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On the formalization of some results of context-free language theoryContext-free language theoryLanguage closureGrammar simplificationChomsky Normal FormPumping LemmaFormalizationCoqScience & TechnologyThis work describes a formalization effort, using the Coq proof assistant, of fundamental results related to the classical theory of context-free grammars and languages. These include closure properties (union, concatenation and Kleene star), grammar simplification (elimination of useless symbols, inaccessible symbols, empty rules and unit rules), the existence of a Chomsky Normal Form for context-free grammars and the Pumping Lemma for context-free languages. The result is an important set of libraries covering the main results of context-free language theory, with more than 500 lemmas and theorems fully proved and checked. This is probably the most comprehensive formalization of the classical context-free language theory in the Coq proof assistant done to the present date, and includes the important result that is the formalization of the Pumping Lemma for context-free languages.info:eu-repo/semantics/publishedVersionSpringer VerlagUniversidade do MinhoMidena Ramos, Marcus Viniciusde Queiroz, Ruy J. G. B.Moreira, NelmaAlmeida, José Bacelar20162016-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/50463eng97836625292010302-974310.1007/978-3-662-52921-8_21info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:38:30Zoai:repositorium.sdum.uminho.pt:1822/50463Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:59:39.041114Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On the formalization of some results of context-free language theory
title On the formalization of some results of context-free language theory
spellingShingle On the formalization of some results of context-free language theory
Midena Ramos, Marcus Vinicius
Context-free language theory
Language closure
Grammar simplification
Chomsky Normal Form
Pumping Lemma
Formalization
Coq
Science & Technology
title_short On the formalization of some results of context-free language theory
title_full On the formalization of some results of context-free language theory
title_fullStr On the formalization of some results of context-free language theory
title_full_unstemmed On the formalization of some results of context-free language theory
title_sort On the formalization of some results of context-free language theory
author Midena Ramos, Marcus Vinicius
author_facet Midena Ramos, Marcus Vinicius
de Queiroz, Ruy J. G. B.
Moreira, Nelma
Almeida, José Bacelar
author_role author
author2 de Queiroz, Ruy J. G. B.
Moreira, Nelma
Almeida, José Bacelar
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Midena Ramos, Marcus Vinicius
de Queiroz, Ruy J. G. B.
Moreira, Nelma
Almeida, José Bacelar
dc.subject.por.fl_str_mv Context-free language theory
Language closure
Grammar simplification
Chomsky Normal Form
Pumping Lemma
Formalization
Coq
Science & Technology
topic Context-free language theory
Language closure
Grammar simplification
Chomsky Normal Form
Pumping Lemma
Formalization
Coq
Science & Technology
description This work describes a formalization effort, using the Coq proof assistant, of fundamental results related to the classical theory of context-free grammars and languages. These include closure properties (union, concatenation and Kleene star), grammar simplification (elimination of useless symbols, inaccessible symbols, empty rules and unit rules), the existence of a Chomsky Normal Form for context-free grammars and the Pumping Lemma for context-free languages. The result is an important set of libraries covering the main results of context-free language theory, with more than 500 lemmas and theorems fully proved and checked. This is probably the most comprehensive formalization of the classical context-free language theory in the Coq proof assistant done to the present date, and includes the important result that is the formalization of the Pumping Lemma for context-free languages.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/50463
url http://hdl.handle.net/1822/50463
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9783662529201
0302-9743
10.1007/978-3-662-52921-8_21
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595670103064576