Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials

Bibliographic Details
Main Author: Branquinho, Amílcar
Publication Date: 2023
Other Authors: Foulquié-Moreno, Ana, Mañas, Manuel
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/39833
Summary: Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given
id RCAP_19e55a0623c2bb648be2435724be2938
oai_identifier_str oai:ria.ua.pt:10773/39833
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomialsBounded banded matricesOscillatory matricesTotally nonnegative matricesSpectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is givenElsevier2023-12-15T16:26:58Z2023-12-01T00:00:00Z2023-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39833eng0001-870810.1016/j.aim.2023.109313Branquinho, AmílcarFoulquié-Moreno, AnaMañas, Manuelinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:50:00Zoai:ria.ua.pt:10773/39833Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:21:44.230207Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
title Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
spellingShingle Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
Branquinho, Amílcar
Bounded banded matrices
Oscillatory matrices
Totally nonnegative matrices
title_short Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
title_full Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
title_fullStr Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
title_full_unstemmed Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
title_sort Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
author Branquinho, Amílcar
author_facet Branquinho, Amílcar
Foulquié-Moreno, Ana
Mañas, Manuel
author_role author
author2 Foulquié-Moreno, Ana
Mañas, Manuel
author2_role author
author
dc.contributor.author.fl_str_mv Branquinho, Amílcar
Foulquié-Moreno, Ana
Mañas, Manuel
dc.subject.por.fl_str_mv Bounded banded matrices
Oscillatory matrices
Totally nonnegative matrices
topic Bounded banded matrices
Oscillatory matrices
Totally nonnegative matrices
description Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given
publishDate 2023
dc.date.none.fl_str_mv 2023-12-15T16:26:58Z
2023-12-01T00:00:00Z
2023-12-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/39833
url http://hdl.handle.net/10773/39833
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0001-8708
10.1016/j.aim.2023.109313
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594533087019008