Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/39833 |
Summary: | Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given |
id |
RCAP_19e55a0623c2bb648be2435724be2938 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39833 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomialsBounded banded matricesOscillatory matricesTotally nonnegative matricesSpectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is givenElsevier2023-12-15T16:26:58Z2023-12-01T00:00:00Z2023-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39833eng0001-870810.1016/j.aim.2023.109313Branquinho, AmílcarFoulquié-Moreno, AnaMañas, Manuelinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:50:00Zoai:ria.ua.pt:10773/39833Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:21:44.230207Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials |
title |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials |
spellingShingle |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials Branquinho, Amílcar Bounded banded matrices Oscillatory matrices Totally nonnegative matrices |
title_short |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials |
title_full |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials |
title_fullStr |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials |
title_full_unstemmed |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials |
title_sort |
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials |
author |
Branquinho, Amílcar |
author_facet |
Branquinho, Amílcar Foulquié-Moreno, Ana Mañas, Manuel |
author_role |
author |
author2 |
Foulquié-Moreno, Ana Mañas, Manuel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Branquinho, Amílcar Foulquié-Moreno, Ana Mañas, Manuel |
dc.subject.por.fl_str_mv |
Bounded banded matrices Oscillatory matrices Totally nonnegative matrices |
topic |
Bounded banded matrices Oscillatory matrices Totally nonnegative matrices |
description |
Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-15T16:26:58Z 2023-12-01T00:00:00Z 2023-12-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39833 |
url |
http://hdl.handle.net/10773/39833 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0001-8708 10.1016/j.aim.2023.109313 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594533087019008 |