Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/175416 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_17c9bce63c2e1f6d2eb95ff6f9f84e3a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/175416 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case StudyBike-sharingSoft MobilityMachine LearningPredictive ModelingCyclingSDG 11 - Sustainable cities and communitiesSDG 13 - Climate actionDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe Internet of Things (IoT) uses intelligent technology and interconnected devices to gather real-time data, enabling a shift to sustainable transportation modes. This has made bikesharing systems (BSS) a popular and reliable form of soft mobility in urban environments. This study leverages these technological advancements to understand how city events affect Lisbon's BSS, GIRA, by predicting hourly station occupancy rates using the CRISP-DM methodology. By integrating weather information and event data into BSS station-level data spanning the year of 2022, and applying state-of-art machine learning (ML) algorithms – such as Random Forest (RF), Gradient Boosting Tree (GBT), and Extreme Gradient Boosting (XGBoost) – the research aims to optimize station occupancy management during events. This contributes to more efficient urban transportation systems and a sustainable future for Lisbon. Major findings show that XGBoost outperformed the other algorithms, having a higher predictive accuracy during sport event days, and in music event days stations near Coliseu dos Recreios require strong rebalancing efforts.Jardim, João Bruno Morais de SousaAlbuquerque, Lídia Vitória Pires deRUNOliveira, Rita Madalena Cardoso da Silva2024-11-082025-11-08T00:00:00Z2024-11-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/175416TID:203777999enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:43:39Zoai:run.unl.pt:10362/175416Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:15:49.186142Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study |
title |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study |
spellingShingle |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study Oliveira, Rita Madalena Cardoso da Silva Bike-sharing Soft Mobility Machine Learning Predictive Modeling Cycling SDG 11 - Sustainable cities and communities SDG 13 - Climate action Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study |
title_full |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study |
title_fullStr |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study |
title_full_unstemmed |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study |
title_sort |
Predicting Station Occupancy on Bike-Sharing System During Events: The Lisbon Case Study |
author |
Oliveira, Rita Madalena Cardoso da Silva |
author_facet |
Oliveira, Rita Madalena Cardoso da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Jardim, João Bruno Morais de Sousa Albuquerque, Lídia Vitória Pires de RUN |
dc.contributor.author.fl_str_mv |
Oliveira, Rita Madalena Cardoso da Silva |
dc.subject.por.fl_str_mv |
Bike-sharing Soft Mobility Machine Learning Predictive Modeling Cycling SDG 11 - Sustainable cities and communities SDG 13 - Climate action Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Bike-sharing Soft Mobility Machine Learning Predictive Modeling Cycling SDG 11 - Sustainable cities and communities SDG 13 - Climate action Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-08 2024-11-08T00:00:00Z 2025-11-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/175416 TID:203777999 |
url |
http://hdl.handle.net/10362/175416 |
identifier_str_mv |
TID:203777999 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597979732213760 |