Nutrient status of major Irish seaweed tides

Bibliographic Details
Main Author: Schrofner, Elena M. N. C.
Publication Date: 2020
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/15168
Summary: Blooms of opportunistic, fast-growing macroalgae (commonly known as seaweed tides), are no novel occurrence, but evermore enhanced in a growing number of places by nutrient overenrichment, global warming and ocean acidification. Following their first appearance several decades ago, macroalgal blooms are shifting coastal communities and hold consequences for ecosystems and shore-based activities (e.g. shifts in primary producers, habitat loss of benthic invertebrates). The invention of nitrogen-based synthetic fertilisers in the early 20th century and increasing urbanisation, including enhanced sewage release along coasts, are considered primary causes. In this thesis dissertation, the nutrient status of the main bloom-forming macroalgal species (Ulva compressa, U. prolifera, U. rigida, Agarophyton vermiculophyllum and Pilayella littoralis) in Ireland was assessed based on tissue nutrient content. Hence, biomass abundance and nitrogen status of specimens from the four estuaries affected by the largest seaweed tides in Ireland were studied between June 2016 and August 2017 over seven sampling occasions, by collecting algal biomass and determining tissue nitrogen (N) and phosphorus (P) contents. Tissue N contents were compared to in previous studies extracted cell subsistence (Qs), and critical quotas (Qc) of the studied or similar species. The obtained results show that neither of the investigated species was limited by N at any time during the study since tissue N content exceeded Qc even during the bloom pinnacle, contrasting to the predominant conception considering N the primary limiting nutrient in cold temperate estuaries. Tissue N content was highest in winter and lowest in spring and summer, coinciding with the biomass peak (i.e. June to October), and therefore negatively correlating with biomass abundance. The results further indicate that slight increases in P might enhance bloom frequency and severity, meaning P needs to be reduced in Irish estuaries to prevent future blooms and preserve pristine coastal habitats.
id RCAP_16c8c45020a41f6e4536c265ae5c97cc
oai_identifier_str oai:sapientia.ualg.pt:10400.1/15168
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Nutrient status of major Irish seaweed tidesEutrophicationNutrient bioassessmentSeaweed tidesNitrogenPhosphorusBlooms of opportunistic, fast-growing macroalgae (commonly known as seaweed tides), are no novel occurrence, but evermore enhanced in a growing number of places by nutrient overenrichment, global warming and ocean acidification. Following their first appearance several decades ago, macroalgal blooms are shifting coastal communities and hold consequences for ecosystems and shore-based activities (e.g. shifts in primary producers, habitat loss of benthic invertebrates). The invention of nitrogen-based synthetic fertilisers in the early 20th century and increasing urbanisation, including enhanced sewage release along coasts, are considered primary causes. In this thesis dissertation, the nutrient status of the main bloom-forming macroalgal species (Ulva compressa, U. prolifera, U. rigida, Agarophyton vermiculophyllum and Pilayella littoralis) in Ireland was assessed based on tissue nutrient content. Hence, biomass abundance and nitrogen status of specimens from the four estuaries affected by the largest seaweed tides in Ireland were studied between June 2016 and August 2017 over seven sampling occasions, by collecting algal biomass and determining tissue nitrogen (N) and phosphorus (P) contents. Tissue N contents were compared to in previous studies extracted cell subsistence (Qs), and critical quotas (Qc) of the studied or similar species. The obtained results show that neither of the investigated species was limited by N at any time during the study since tissue N content exceeded Qc even during the bloom pinnacle, contrasting to the predominant conception considering N the primary limiting nutrient in cold temperate estuaries. Tissue N content was highest in winter and lowest in spring and summer, coinciding with the biomass peak (i.e. June to October), and therefore negatively correlating with biomass abundance. The results further indicate that slight increases in P might enhance bloom frequency and severity, meaning P needs to be reduced in Irish estuaries to prevent future blooms and preserve pristine coastal habitats.Serrão, EsterBermejo, RicardoSapientiaSchrofner, Elena M. N. C.2021-03-04T16:41:22Z2020-12-172020-12-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/15168urn:tid:202652181enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:37:57Zoai:sapientia.ualg.pt:10400.1/15168Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:29:30.557550Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Nutrient status of major Irish seaweed tides
title Nutrient status of major Irish seaweed tides
spellingShingle Nutrient status of major Irish seaweed tides
Schrofner, Elena M. N. C.
Eutrophication
Nutrient bioassessment
Seaweed tides
Nitrogen
Phosphorus
title_short Nutrient status of major Irish seaweed tides
title_full Nutrient status of major Irish seaweed tides
title_fullStr Nutrient status of major Irish seaweed tides
title_full_unstemmed Nutrient status of major Irish seaweed tides
title_sort Nutrient status of major Irish seaweed tides
author Schrofner, Elena M. N. C.
author_facet Schrofner, Elena M. N. C.
author_role author
dc.contributor.none.fl_str_mv Serrão, Ester
Bermejo, Ricardo
Sapientia
dc.contributor.author.fl_str_mv Schrofner, Elena M. N. C.
dc.subject.por.fl_str_mv Eutrophication
Nutrient bioassessment
Seaweed tides
Nitrogen
Phosphorus
topic Eutrophication
Nutrient bioassessment
Seaweed tides
Nitrogen
Phosphorus
description Blooms of opportunistic, fast-growing macroalgae (commonly known as seaweed tides), are no novel occurrence, but evermore enhanced in a growing number of places by nutrient overenrichment, global warming and ocean acidification. Following their first appearance several decades ago, macroalgal blooms are shifting coastal communities and hold consequences for ecosystems and shore-based activities (e.g. shifts in primary producers, habitat loss of benthic invertebrates). The invention of nitrogen-based synthetic fertilisers in the early 20th century and increasing urbanisation, including enhanced sewage release along coasts, are considered primary causes. In this thesis dissertation, the nutrient status of the main bloom-forming macroalgal species (Ulva compressa, U. prolifera, U. rigida, Agarophyton vermiculophyllum and Pilayella littoralis) in Ireland was assessed based on tissue nutrient content. Hence, biomass abundance and nitrogen status of specimens from the four estuaries affected by the largest seaweed tides in Ireland were studied between June 2016 and August 2017 over seven sampling occasions, by collecting algal biomass and determining tissue nitrogen (N) and phosphorus (P) contents. Tissue N contents were compared to in previous studies extracted cell subsistence (Qs), and critical quotas (Qc) of the studied or similar species. The obtained results show that neither of the investigated species was limited by N at any time during the study since tissue N content exceeded Qc even during the bloom pinnacle, contrasting to the predominant conception considering N the primary limiting nutrient in cold temperate estuaries. Tissue N content was highest in winter and lowest in spring and summer, coinciding with the biomass peak (i.e. June to October), and therefore negatively correlating with biomass abundance. The results further indicate that slight increases in P might enhance bloom frequency and severity, meaning P needs to be reduced in Irish estuaries to prevent future blooms and preserve pristine coastal habitats.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-17
2020-12-17T00:00:00Z
2021-03-04T16:41:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/15168
urn:tid:202652181
url http://hdl.handle.net/10400.1/15168
identifier_str_mv urn:tid:202652181
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598683513356288