Export Ready — 

Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi

Bibliographic Details
Main Author: Cavaleiro, A. J.
Publication Date: 2010
Other Authors: Sousa, D. Z., Alves, M. M.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/34282
Summary: Long-chain fatty acids (LCFA) are commonly present in fatty-wastewaters. Complete LCFA degradation depends on the coordinated activity of syntrophic bacteria, which convert LCFA to acetate and hydrogen, and methanogenic archaea, that utilize these substrates, making the overall conversion energetically possible. LCFA-degrading bacteria are fastidious microorganisms with low predominance in bioreactors. Thus, addition of LCFA-degrading bacteria to anaerobic sludge can possibly improve LCFA biodegradation and enhance methane production. In this work, a co-culture of Syntrophomonas zehnderi and Methanobacterium formicicum was added to non-acclimated granular sludge. Two sets of bottles were prepared, with and without sepiolite, a solid microcarrier. Sludge was bioaugmented with co-culture and supplemented with 1 mM oleate. Blanks (without oleate) and controls (with inactivated co-culture) were also prepared. Methane, VFA and LCFA were quantified. Addition of S. zehnderi enhanced LCFA degradation, both in the assays prepared with and without microcarrier. In the bottles containing bioaugmented sludge and no microcarrier, acetate accumulated in the medium indicating a fast LCFA β-oxidation: after 15 days of incubation, maximum acetate concentrations (approx. 5 mM) were attained and 77% of the added oleate could be accounted for the acetate and methane measured. In non-bioaugmented sludge, acetate accumulation started later and, after 15 days of incubation, was not higher than 1.5 mM. In bottles containing microcarrier methane was produced at a higher rate. In this case only residual acetate concentrations were measured, indicating balanced syntrophic relations, maybe due to stimulation of bacteria-archaea relation by the microcarrier. Methane production from oleate was most favored in bottles supplemented with the syntrophic co-culture and containing microcarrier: 71% of the added oleate was recovered as methane after 12 days of incubation and a maximum methane production rate of 1.12 mMCH4day-1 was observed. Bioaugmentation with S. zehnderi enhances oleate biodegradation and can be potentially useful for a faster reactor start-up.
id RCAP_141a4b0b922c9513e2b852f026e15afc
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/34282
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderiLCFABioaugmentationSyntrophomonas zehnderiMethaneLong-chain fatty acids (LCFA) are commonly present in fatty-wastewaters. Complete LCFA degradation depends on the coordinated activity of syntrophic bacteria, which convert LCFA to acetate and hydrogen, and methanogenic archaea, that utilize these substrates, making the overall conversion energetically possible. LCFA-degrading bacteria are fastidious microorganisms with low predominance in bioreactors. Thus, addition of LCFA-degrading bacteria to anaerobic sludge can possibly improve LCFA biodegradation and enhance methane production. In this work, a co-culture of Syntrophomonas zehnderi and Methanobacterium formicicum was added to non-acclimated granular sludge. Two sets of bottles were prepared, with and without sepiolite, a solid microcarrier. Sludge was bioaugmented with co-culture and supplemented with 1 mM oleate. Blanks (without oleate) and controls (with inactivated co-culture) were also prepared. Methane, VFA and LCFA were quantified. Addition of S. zehnderi enhanced LCFA degradation, both in the assays prepared with and without microcarrier. In the bottles containing bioaugmented sludge and no microcarrier, acetate accumulated in the medium indicating a fast LCFA β-oxidation: after 15 days of incubation, maximum acetate concentrations (approx. 5 mM) were attained and 77% of the added oleate could be accounted for the acetate and methane measured. In non-bioaugmented sludge, acetate accumulation started later and, after 15 days of incubation, was not higher than 1.5 mM. In bottles containing microcarrier methane was produced at a higher rate. In this case only residual acetate concentrations were measured, indicating balanced syntrophic relations, maybe due to stimulation of bacteria-archaea relation by the microcarrier. Methane production from oleate was most favored in bottles supplemented with the syntrophic co-culture and containing microcarrier: 71% of the added oleate was recovered as methane after 12 days of incubation and a maximum methane production rate of 1.12 mMCH4day-1 was observed. Bioaugmentation with S. zehnderi enhances oleate biodegradation and can be potentially useful for a faster reactor start-up.Universidade do MinhoCavaleiro, A. J.Sousa, D. Z.Alves, M. M.20102010-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/34282engCavaleiro, A. J.; Sousa, D. Z.; Alves, M. M., Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi. Water Research Conference 2010. No. P014, Lisbon, Portugal, 11-14 April, 2010.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:31:49Zoai:repositorium.sdum.uminho.pt:1822/34282Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:56:12.861231Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
title Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
spellingShingle Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
Cavaleiro, A. J.
LCFA
Bioaugmentation
Syntrophomonas zehnderi
Methane
title_short Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
title_full Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
title_fullStr Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
title_full_unstemmed Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
title_sort Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi
author Cavaleiro, A. J.
author_facet Cavaleiro, A. J.
Sousa, D. Z.
Alves, M. M.
author_role author
author2 Sousa, D. Z.
Alves, M. M.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cavaleiro, A. J.
Sousa, D. Z.
Alves, M. M.
dc.subject.por.fl_str_mv LCFA
Bioaugmentation
Syntrophomonas zehnderi
Methane
topic LCFA
Bioaugmentation
Syntrophomonas zehnderi
Methane
description Long-chain fatty acids (LCFA) are commonly present in fatty-wastewaters. Complete LCFA degradation depends on the coordinated activity of syntrophic bacteria, which convert LCFA to acetate and hydrogen, and methanogenic archaea, that utilize these substrates, making the overall conversion energetically possible. LCFA-degrading bacteria are fastidious microorganisms with low predominance in bioreactors. Thus, addition of LCFA-degrading bacteria to anaerobic sludge can possibly improve LCFA biodegradation and enhance methane production. In this work, a co-culture of Syntrophomonas zehnderi and Methanobacterium formicicum was added to non-acclimated granular sludge. Two sets of bottles were prepared, with and without sepiolite, a solid microcarrier. Sludge was bioaugmented with co-culture and supplemented with 1 mM oleate. Blanks (without oleate) and controls (with inactivated co-culture) were also prepared. Methane, VFA and LCFA were quantified. Addition of S. zehnderi enhanced LCFA degradation, both in the assays prepared with and without microcarrier. In the bottles containing bioaugmented sludge and no microcarrier, acetate accumulated in the medium indicating a fast LCFA β-oxidation: after 15 days of incubation, maximum acetate concentrations (approx. 5 mM) were attained and 77% of the added oleate could be accounted for the acetate and methane measured. In non-bioaugmented sludge, acetate accumulation started later and, after 15 days of incubation, was not higher than 1.5 mM. In bottles containing microcarrier methane was produced at a higher rate. In this case only residual acetate concentrations were measured, indicating balanced syntrophic relations, maybe due to stimulation of bacteria-archaea relation by the microcarrier. Methane production from oleate was most favored in bottles supplemented with the syntrophic co-culture and containing microcarrier: 71% of the added oleate was recovered as methane after 12 days of incubation and a maximum methane production rate of 1.12 mMCH4day-1 was observed. Bioaugmentation with S. zehnderi enhances oleate biodegradation and can be potentially useful for a faster reactor start-up.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/34282
url http://hdl.handle.net/1822/34282
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Cavaleiro, A. J.; Sousa, D. Z.; Alves, M. M., Anaerobic treatment of LCFA-rich wastewater: assessing the bioaugmentation potential of Syntrophomonas zehnderi. Water Research Conference 2010. No. P014, Lisbon, Portugal, 11-14 April, 2010.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595631861497856