Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine
Main Author: | |
---|---|
Publication Date: | 2014 |
Other Authors: | , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/30785 |
Summary: | "Accepted for publication" |
id |
RCAP_13e4ac8dc6e2cdfa6ed96aaca78e063b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/30785 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicineData MiningClassificationIntensive CareSepsisPredict Therapeutic PlansIntcareClassification modelsINTCare projectSepsis levelTherapeutic plansScience & Technology"Accepted for publication"This work aims to support doctor’s decision-making on predicting sepsis level and the best treatment for patients with microbiological problems. A set of Data Mining (DM) models was developed using forecasting techniques and classification models which will enable doctors’ decisions about the appropriate therapy to apply, as well as the most successful one. The data used in DM models were collected at the Intensive Care Unit (ICU) of the Centro Hospitalar do Porto, in Oporto, Portugal. Classification models where considered to predict sepsis level and therapeutic plan for patients with sepsis in a supervised learning approach. Models were induced making use of the following algorithms: Decision Trees, Support Vector Machines and Naïve Bayes classifier. Confusion Matrix, including associated metrics, and Cross-validation were used for the evaluation. Analysis of the total error rate, sensitivity, specificity and accuracy were the associated metrics used to identify the most relevant measures to predict sepsis level and treatment plan under study. In conclusion, it was possible to predict with great accuracy the sepsis level (2nd and 3rd), but not the therapeutic plan. Although the good results attained for sepsis (accuracy: 100%), therapeutic plan does not present the same level of accuracy (best: 62.8%).FCT -Fundação para a Ciência e a Tecnologia(PEst-OE/EEI/UI0319/2014)IGI GlobalUniversidade do MinhoGonçalves, JoãoPortela, FilipeSantos, Manuel FilipeSilva, ÁlvaroMachado, José ManuelAbelha, AntónioRua, Fernando2014-11-062014-11-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/30785eng1555-339610.4018/ijhisi.2014070103info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:42:34Zoai:repositorium.sdum.uminho.pt:1822/30785Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:27:28.710705Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine |
title |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine |
spellingShingle |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine Gonçalves, João Data Mining Classification Intensive Care Sepsis Predict Therapeutic Plans Intcare Classification models INTCare project Sepsis level Therapeutic plans Science & Technology |
title_short |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine |
title_full |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine |
title_fullStr |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine |
title_full_unstemmed |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine |
title_sort |
Real-time predictive analytics for sepsis level and therapeutic plans in intensive care medicine |
author |
Gonçalves, João |
author_facet |
Gonçalves, João Portela, Filipe Santos, Manuel Filipe Silva, Álvaro Machado, José Manuel Abelha, António Rua, Fernando |
author_role |
author |
author2 |
Portela, Filipe Santos, Manuel Filipe Silva, Álvaro Machado, José Manuel Abelha, António Rua, Fernando |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gonçalves, João Portela, Filipe Santos, Manuel Filipe Silva, Álvaro Machado, José Manuel Abelha, António Rua, Fernando |
dc.subject.por.fl_str_mv |
Data Mining Classification Intensive Care Sepsis Predict Therapeutic Plans Intcare Classification models INTCare project Sepsis level Therapeutic plans Science & Technology |
topic |
Data Mining Classification Intensive Care Sepsis Predict Therapeutic Plans Intcare Classification models INTCare project Sepsis level Therapeutic plans Science & Technology |
description |
"Accepted for publication" |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11-06 2014-11-06T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/30785 |
url |
http://hdl.handle.net/1822/30785 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1555-3396 10.4018/ijhisi.2014070103 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IGI Global |
publisher.none.fl_str_mv |
IGI Global |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595327604588544 |