Multistage iterative methods for symmetric positive definite matrices

Bibliographic Details
Main Author: Lu Xuejing
Publication Date: 2013
Other Authors: Liu Zhongyun, Zhang Yulin
Format: Article
Language: zho
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/25244
Summary: In this paper a multistage iterative method for solving the symmetric positive definite linear systems is established and the convergence of the method is proved. A numerical example is given to illustrate the effectiveness of our method. The method is especially suitable for parallel computation, and can be viewed as a extension of the classical iterative method or as a preconditioner for the conjugate gradient method.
id RCAP_1361f2dbccd9de4ccb6842896cdb19d2
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/25244
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Multistage iterative methods for symmetric positive definite matricesLinear systemsSymmetric positive definite matrixMultistage splittingIterative methodIn this paper a multistage iterative method for solving the symmetric positive definite linear systems is established and the convergence of the method is proved. A numerical example is given to illustrate the effectiveness of our method. The method is especially suitable for parallel computation, and can be viewed as a extension of the classical iterative method or as a preconditioner for the conjugate gradient method.Fundação para a Ciência e a Tecnologia (FCT) and National Natural Science Foundation of China under Grant No. 10771022Mathematics Society of HunanUniversidade do MinhoLu XuejingLiu ZhongyunZhang Yulin20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/25244zho1006-8074http://www.cqvip.com/qk/82731Xinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:21:29Zoai:repositorium.sdum.uminho.pt:1822/25244Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:46:09.194016Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Multistage iterative methods for symmetric positive definite matrices
title Multistage iterative methods for symmetric positive definite matrices
spellingShingle Multistage iterative methods for symmetric positive definite matrices
Lu Xuejing
Linear systems
Symmetric positive definite matrix
Multistage splitting
Iterative method
title_short Multistage iterative methods for symmetric positive definite matrices
title_full Multistage iterative methods for symmetric positive definite matrices
title_fullStr Multistage iterative methods for symmetric positive definite matrices
title_full_unstemmed Multistage iterative methods for symmetric positive definite matrices
title_sort Multistage iterative methods for symmetric positive definite matrices
author Lu Xuejing
author_facet Lu Xuejing
Liu Zhongyun
Zhang Yulin
author_role author
author2 Liu Zhongyun
Zhang Yulin
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Lu Xuejing
Liu Zhongyun
Zhang Yulin
dc.subject.por.fl_str_mv Linear systems
Symmetric positive definite matrix
Multistage splitting
Iterative method
topic Linear systems
Symmetric positive definite matrix
Multistage splitting
Iterative method
description In this paper a multistage iterative method for solving the symmetric positive definite linear systems is established and the convergence of the method is proved. A numerical example is given to illustrate the effectiveness of our method. The method is especially suitable for parallel computation, and can be viewed as a extension of the classical iterative method or as a preconditioner for the conjugate gradient method.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/25244
url http://hdl.handle.net/1822/25244
dc.language.iso.fl_str_mv zho
language zho
dc.relation.none.fl_str_mv 1006-8074
http://www.cqvip.com/qk/82731X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Mathematics Society of Hunan
publisher.none.fl_str_mv Mathematics Society of Hunan
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594874872463360