Idempotent Submodules
| Main Author: | |
|---|---|
| Publication Date: | 2006 |
| Format: | Report |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | https://hdl.handle.net/10216/25795 |
Summary: | Bican, Jambor, Kepka and Nemec defined a product on the lattice of submodules of a module, making any module into a partially ordered groupoid. Submodules that are idempotent with respect to this product behave similar as idempotent ideals in rings. In particular jansian torsion theories can be described through idempotent submodules. Moreover so-called coclosed submodules, which are essentially closed elements in the dual lattice of submodules of a module, turn out to be idempotent in pi-projective modules. The relation of strongly copolyform modules and the regularity of their endomorphism ring is discussed. |
| id |
RCAP_12df1f6f85cc4d5209f9e02f47a49eb1 |
|---|---|
| oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/25795 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Idempotent SubmodulesÁlgebra, MatemáticaAlgebra, MathematicsBican, Jambor, Kepka and Nemec defined a product on the lattice of submodules of a module, making any module into a partially ordered groupoid. Submodules that are idempotent with respect to this product behave similar as idempotent ideals in rings. In particular jansian torsion theories can be described through idempotent submodules. Moreover so-called coclosed submodules, which are essentially closed elements in the dual lattice of submodules of a module, turn out to be idempotent in pi-projective modules. The relation of strongly copolyform modules and the regularity of their endomorphism ring is discussed.20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportapplication/pdfhttps://hdl.handle.net/10216/25795engChristian Lompinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T17:47:03Zoai:repositorio-aberto.up.pt:10216/25795Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:26:28.546287Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Idempotent Submodules |
| title |
Idempotent Submodules |
| spellingShingle |
Idempotent Submodules Christian Lomp Álgebra, Matemática Algebra, Mathematics |
| title_short |
Idempotent Submodules |
| title_full |
Idempotent Submodules |
| title_fullStr |
Idempotent Submodules |
| title_full_unstemmed |
Idempotent Submodules |
| title_sort |
Idempotent Submodules |
| author |
Christian Lomp |
| author_facet |
Christian Lomp |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Christian Lomp |
| dc.subject.por.fl_str_mv |
Álgebra, Matemática Algebra, Mathematics |
| topic |
Álgebra, Matemática Algebra, Mathematics |
| description |
Bican, Jambor, Kepka and Nemec defined a product on the lattice of submodules of a module, making any module into a partially ordered groupoid. Submodules that are idempotent with respect to this product behave similar as idempotent ideals in rings. In particular jansian torsion theories can be described through idempotent submodules. Moreover so-called coclosed submodules, which are essentially closed elements in the dual lattice of submodules of a module, turn out to be idempotent in pi-projective modules. The relation of strongly copolyform modules and the regularity of their endomorphism ring is discussed. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006 2006-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/report |
| format |
report |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/25795 |
| url |
https://hdl.handle.net/10216/25795 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833599693451427840 |