Quantitative kleene coalgebras
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/34436 |
Summary: | We present a systematic way to generate (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of quantitative systems. Our quantitative systems include weighted versions of automata and transition systems, in which transitions are assigned a value in a monoid that represents cost, duration, probability, etc. Such systems are represented as coalgebras and (1) and (2) above are derived in a modular fashion from the underlying (functor) type of these coalgebras. In previous work, we applied a similar approach to a class of systems (without weights) that generalizes both the results of Kleene (on rational languages and DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many other systems such as Mealy and Moore machines. In the present paper, we extend this framework to deal with quantitative systems. As a consequence, our results now include languages and axiomatizations, both existing and new ones, for many different kinds of probabilistic systems. |
id |
RCAP_110f0db16c928fce8f3427a8072d40f9 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/34436 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Quantitative kleene coalgebrasComputer Science::Logic in Computer ScienceWe present a systematic way to generate (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of quantitative systems. Our quantitative systems include weighted versions of automata and transition systems, in which transitions are assigned a value in a monoid that represents cost, duration, probability, etc. Such systems are represented as coalgebras and (1) and (2) above are derived in a modular fashion from the underlying (functor) type of these coalgebras. In previous work, we applied a similar approach to a class of systems (without weights) that generalizes both the results of Kleene (on rational languages and DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many other systems such as Mealy and Moore machines. In the present paper, we extend this framework to deal with quantitative systems. As a consequence, our results now include languages and axiomatizations, both existing and new ones, for many different kinds of probabilistic systems.ElsevierUniversidade do MinhoRutten, JanBonsangue, MarcelloBonchi, FilippoSilva, Alexandra20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/34436eng0890-5401info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:56:46Zoai:repositorium.sdum.uminho.pt:1822/34436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:48:37.403005Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Quantitative kleene coalgebras |
title |
Quantitative kleene coalgebras |
spellingShingle |
Quantitative kleene coalgebras Rutten, Jan Computer Science::Logic in Computer Science |
title_short |
Quantitative kleene coalgebras |
title_full |
Quantitative kleene coalgebras |
title_fullStr |
Quantitative kleene coalgebras |
title_full_unstemmed |
Quantitative kleene coalgebras |
title_sort |
Quantitative kleene coalgebras |
author |
Rutten, Jan |
author_facet |
Rutten, Jan Bonsangue, Marcello Bonchi, Filippo Silva, Alexandra |
author_role |
author |
author2 |
Bonsangue, Marcello Bonchi, Filippo Silva, Alexandra |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rutten, Jan Bonsangue, Marcello Bonchi, Filippo Silva, Alexandra |
dc.subject.por.fl_str_mv |
Computer Science::Logic in Computer Science |
topic |
Computer Science::Logic in Computer Science |
description |
We present a systematic way to generate (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of quantitative systems. Our quantitative systems include weighted versions of automata and transition systems, in which transitions are assigned a value in a monoid that represents cost, duration, probability, etc. Such systems are represented as coalgebras and (1) and (2) above are derived in a modular fashion from the underlying (functor) type of these coalgebras. In previous work, we applied a similar approach to a class of systems (without weights) that generalizes both the results of Kleene (on rational languages and DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many other systems such as Mealy and Moore machines. In the present paper, we extend this framework to deal with quantitative systems. As a consequence, our results now include languages and axiomatizations, both existing and new ones, for many different kinds of probabilistic systems. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/34436 |
url |
https://hdl.handle.net/1822/34436 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0890-5401 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595551555256320 |