Quantitative kleene coalgebras

Bibliographic Details
Main Author: Rutten, Jan
Publication Date: 2011
Other Authors: Bonsangue, Marcello, Bonchi, Filippo, Silva, Alexandra
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/34436
Summary: We present a systematic way to generate (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of quantitative systems. Our quantitative systems include weighted versions of automata and transition systems, in which transitions are assigned a value in a monoid that represents cost, duration, probability, etc. Such systems are represented as coalgebras and (1) and (2) above are derived in a modular fashion from the underlying (functor) type of these coalgebras. In previous work, we applied a similar approach to a class of systems (without weights) that generalizes both the results of Kleene (on rational languages and DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many other systems such as Mealy and Moore machines. In the present paper, we extend this framework to deal with quantitative systems. As a consequence, our results now include languages and axiomatizations, both existing and new ones, for many different kinds of probabilistic systems.
id RCAP_110f0db16c928fce8f3427a8072d40f9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/34436
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Quantitative kleene coalgebrasComputer Science::Logic in Computer ScienceWe present a systematic way to generate (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of quantitative systems. Our quantitative systems include weighted versions of automata and transition systems, in which transitions are assigned a value in a monoid that represents cost, duration, probability, etc. Such systems are represented as coalgebras and (1) and (2) above are derived in a modular fashion from the underlying (functor) type of these coalgebras. In previous work, we applied a similar approach to a class of systems (without weights) that generalizes both the results of Kleene (on rational languages and DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many other systems such as Mealy and Moore machines. In the present paper, we extend this framework to deal with quantitative systems. As a consequence, our results now include languages and axiomatizations, both existing and new ones, for many different kinds of probabilistic systems.ElsevierUniversidade do MinhoRutten, JanBonsangue, MarcelloBonchi, FilippoSilva, Alexandra20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/34436eng0890-5401info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:56:46Zoai:repositorium.sdum.uminho.pt:1822/34436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:48:37.403005Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Quantitative kleene coalgebras
title Quantitative kleene coalgebras
spellingShingle Quantitative kleene coalgebras
Rutten, Jan
Computer Science::Logic in Computer Science
title_short Quantitative kleene coalgebras
title_full Quantitative kleene coalgebras
title_fullStr Quantitative kleene coalgebras
title_full_unstemmed Quantitative kleene coalgebras
title_sort Quantitative kleene coalgebras
author Rutten, Jan
author_facet Rutten, Jan
Bonsangue, Marcello
Bonchi, Filippo
Silva, Alexandra
author_role author
author2 Bonsangue, Marcello
Bonchi, Filippo
Silva, Alexandra
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rutten, Jan
Bonsangue, Marcello
Bonchi, Filippo
Silva, Alexandra
dc.subject.por.fl_str_mv Computer Science::Logic in Computer Science
topic Computer Science::Logic in Computer Science
description We present a systematic way to generate (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of quantitative systems. Our quantitative systems include weighted versions of automata and transition systems, in which transitions are assigned a value in a monoid that represents cost, duration, probability, etc. Such systems are represented as coalgebras and (1) and (2) above are derived in a modular fashion from the underlying (functor) type of these coalgebras. In previous work, we applied a similar approach to a class of systems (without weights) that generalizes both the results of Kleene (on rational languages and DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many other systems such as Mealy and Moore machines. In the present paper, we extend this framework to deal with quantitative systems. As a consequence, our results now include languages and axiomatizations, both existing and new ones, for many different kinds of probabilistic systems.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/34436
url https://hdl.handle.net/1822/34436
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0890-5401
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595551555256320