Decoding brand perception through online customer reviews: A comparative study across geographical locations

Bibliographic Details
Main Author: Holm, Gabriella Märta Kristina
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/175483
Summary: Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and Analytics
id RCAP_0f8f0adb7f617d3e9ade3dc25dfdf65e
oai_identifier_str oai:run.unl.pt:10362/175483
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Decoding brand perception through online customer reviews: A comparative study across geographical locationsOnline reviewseWOMWeb scrapingBrandingText MiningSentiment AnalysisSDG 8 - Decent work and economic growthSDG 9 - Industry, innovation and infrastructureSDG 11 - Sustainable cities and communitiesDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and AnalyticsAnalyzing online reviews is essential for measuring reputation due to the rich availability of data, cost-effectiveness, and time efficiency compared to traditional survey methods. This study details brand perception and customers' experiences of Nordic logistics in 2023, aiming to elevate reputation and gain deeper insights into customer expectations and satisfaction to guide improvements in service delivery and communication strategies. A custom-developed web scraper collected unsupervised data from Trustpilot, utilizing advanced text mining techniques Term Frequency-Inverse Document Frequency (TF-IDF), Latent Dirichlet Allocation (LDA) topic modeling, and sentiment analysis. Key service attributes, emotional tones, and positive and negative themes valued in user-generated content are uncovered in electronic word of mouth. Findings reveal that customers prioritize fast, reliable services with clear communication. Negative feedback highlights issues with delivery accuracy, damaged packages, and inconvenient pickup locations. Satisfaction for home delivery, parcel shops, and parcel lockers is higher in Denmark than Sweden. Dao Denmark showed best net sentiment scores, followed by GLS Denmark, Instabox, Bring Denmark, and Bring Sweden. PostNord Sweden showed a negative trend. Thisresearch contributes to academic literature and provides valuable insights for logistics companies to enhance service delivery, ultimately leading to better customer experiences and stronger brand loyalty. Regional differences and customer priorities offer implications for business practices and strategic planning.António, Nuno Miguel da ConceiçãoRita, Paulo Miguel Rasquinho FerreiraRUNHolm, Gabriella Märta Kristina2024-10-282026-10-28T00:00:00Z2024-10-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/175483TID:203795709enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:43:43Zoai:run.unl.pt:10362/175483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:15:51.612237Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Decoding brand perception through online customer reviews: A comparative study across geographical locations
title Decoding brand perception through online customer reviews: A comparative study across geographical locations
spellingShingle Decoding brand perception through online customer reviews: A comparative study across geographical locations
Holm, Gabriella Märta Kristina
Online reviews
eWOM
Web scraping
Branding
Text Mining
Sentiment Analysis
SDG 8 - Decent work and economic growth
SDG 9 - Industry, innovation and infrastructure
SDG 11 - Sustainable cities and communities
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
title_short Decoding brand perception through online customer reviews: A comparative study across geographical locations
title_full Decoding brand perception through online customer reviews: A comparative study across geographical locations
title_fullStr Decoding brand perception through online customer reviews: A comparative study across geographical locations
title_full_unstemmed Decoding brand perception through online customer reviews: A comparative study across geographical locations
title_sort Decoding brand perception through online customer reviews: A comparative study across geographical locations
author Holm, Gabriella Märta Kristina
author_facet Holm, Gabriella Märta Kristina
author_role author
dc.contributor.none.fl_str_mv António, Nuno Miguel da Conceição
Rita, Paulo Miguel Rasquinho Ferreira
RUN
dc.contributor.author.fl_str_mv Holm, Gabriella Märta Kristina
dc.subject.por.fl_str_mv Online reviews
eWOM
Web scraping
Branding
Text Mining
Sentiment Analysis
SDG 8 - Decent work and economic growth
SDG 9 - Industry, innovation and infrastructure
SDG 11 - Sustainable cities and communities
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
topic Online reviews
eWOM
Web scraping
Branding
Text Mining
Sentiment Analysis
SDG 8 - Decent work and economic growth
SDG 9 - Industry, innovation and infrastructure
SDG 11 - Sustainable cities and communities
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
description Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and Analytics
publishDate 2024
dc.date.none.fl_str_mv 2024-10-28
2024-10-28T00:00:00Z
2026-10-28T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/175483
TID:203795709
url http://hdl.handle.net/10362/175483
identifier_str_mv TID:203795709
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597979822391296