Decoding brand perception through online customer reviews: A comparative study across geographical locations
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/175483 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and Analytics |
id |
RCAP_0f8f0adb7f617d3e9ade3dc25dfdf65e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/175483 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Decoding brand perception through online customer reviews: A comparative study across geographical locationsOnline reviewseWOMWeb scrapingBrandingText MiningSentiment AnalysisSDG 8 - Decent work and economic growthSDG 9 - Industry, innovation and infrastructureSDG 11 - Sustainable cities and communitiesDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and AnalyticsAnalyzing online reviews is essential for measuring reputation due to the rich availability of data, cost-effectiveness, and time efficiency compared to traditional survey methods. This study details brand perception and customers' experiences of Nordic logistics in 2023, aiming to elevate reputation and gain deeper insights into customer expectations and satisfaction to guide improvements in service delivery and communication strategies. A custom-developed web scraper collected unsupervised data from Trustpilot, utilizing advanced text mining techniques Term Frequency-Inverse Document Frequency (TF-IDF), Latent Dirichlet Allocation (LDA) topic modeling, and sentiment analysis. Key service attributes, emotional tones, and positive and negative themes valued in user-generated content are uncovered in electronic word of mouth. Findings reveal that customers prioritize fast, reliable services with clear communication. Negative feedback highlights issues with delivery accuracy, damaged packages, and inconvenient pickup locations. Satisfaction for home delivery, parcel shops, and parcel lockers is higher in Denmark than Sweden. Dao Denmark showed best net sentiment scores, followed by GLS Denmark, Instabox, Bring Denmark, and Bring Sweden. PostNord Sweden showed a negative trend. Thisresearch contributes to academic literature and provides valuable insights for logistics companies to enhance service delivery, ultimately leading to better customer experiences and stronger brand loyalty. Regional differences and customer priorities offer implications for business practices and strategic planning.António, Nuno Miguel da ConceiçãoRita, Paulo Miguel Rasquinho FerreiraRUNHolm, Gabriella Märta Kristina2024-10-282026-10-28T00:00:00Z2024-10-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/175483TID:203795709enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:43:43Zoai:run.unl.pt:10362/175483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:15:51.612237Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Decoding brand perception through online customer reviews: A comparative study across geographical locations |
title |
Decoding brand perception through online customer reviews: A comparative study across geographical locations |
spellingShingle |
Decoding brand perception through online customer reviews: A comparative study across geographical locations Holm, Gabriella Märta Kristina Online reviews eWOM Web scraping Branding Text Mining Sentiment Analysis SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure SDG 11 - Sustainable cities and communities Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Decoding brand perception through online customer reviews: A comparative study across geographical locations |
title_full |
Decoding brand perception through online customer reviews: A comparative study across geographical locations |
title_fullStr |
Decoding brand perception through online customer reviews: A comparative study across geographical locations |
title_full_unstemmed |
Decoding brand perception through online customer reviews: A comparative study across geographical locations |
title_sort |
Decoding brand perception through online customer reviews: A comparative study across geographical locations |
author |
Holm, Gabriella Märta Kristina |
author_facet |
Holm, Gabriella Märta Kristina |
author_role |
author |
dc.contributor.none.fl_str_mv |
António, Nuno Miguel da Conceição Rita, Paulo Miguel Rasquinho Ferreira RUN |
dc.contributor.author.fl_str_mv |
Holm, Gabriella Märta Kristina |
dc.subject.por.fl_str_mv |
Online reviews eWOM Web scraping Branding Text Mining Sentiment Analysis SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure SDG 11 - Sustainable cities and communities Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Online reviews eWOM Web scraping Branding Text Mining Sentiment Analysis SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure SDG 11 - Sustainable cities and communities Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and Analytics |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-28 2024-10-28T00:00:00Z 2026-10-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/175483 TID:203795709 |
url |
http://hdl.handle.net/10362/175483 |
identifier_str_mv |
TID:203795709 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597979822391296 |