Mathematica tools for coquaternions
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/82842 |
Summary: | Coquaternions form a four dimensional real algebra generalizing complex numbers and were introduced by James Cockle at about the same time that Hamilton discovered the famous algebra of quaternions. Although not as popular as quaternions, in recent years one can observe an emerging interest among mathematicians and physicists on the study of these numbers. In this work we revisit a Mathematica package for implementing the algebra of coquaternions - Coquaternions - and discuss a set of Mathematica functions - CoqPolynomi al - to deal with coquaternionic polynomials. These two sets of functions provide the basic tools necessary for manipulating coquaternions and unilateral coquaternionic polynomials, reflecting, in its present form, the recent interests of the authors in the area. |
id |
RCAP_0e2cd7bf8b7314d6d6cd741e89e70b21 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/82842 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Mathematica tools for coquaternionsCoquaternionsCoquaternionic polynomialsAdmissible classesn^th roots of a coquaternionSymbolic computationCiências Naturais::MatemáticasScience & TechnologyCoquaternions form a four dimensional real algebra generalizing complex numbers and were introduced by James Cockle at about the same time that Hamilton discovered the famous algebra of quaternions. Although not as popular as quaternions, in recent years one can observe an emerging interest among mathematicians and physicists on the study of these numbers. In this work we revisit a Mathematica package for implementing the algebra of coquaternions - Coquaternions - and discuss a set of Mathematica functions - CoqPolynomi al - to deal with coquaternionic polynomials. These two sets of functions provide the basic tools necessary for manipulating coquaternions and unilateral coquaternionic polynomials, reflecting, in its present form, the recent interests of the authors in the area.Supported by FCT - Fundacao para a Ciencia e a Tecnologia, within the Projects UIDB/00013/2020, UIDP/00013/2020 and UIDB/03182/2020.SpringerUniversidade do MinhoFalcão, M. I.Miranda, FernandoSeverino, RicardoSoares, M. J.20212021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/82842eng978-3-030-86972-40302-974310.1007/978-3-030-86973-1_32978-3-030-86973-1https://link.springer.com/chapter/10.1007/978-3-030-86973-1_32info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:14:25Zoai:repositorium.sdum.uminho.pt:1822/82842Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:43:16.713531Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Mathematica tools for coquaternions |
title |
Mathematica tools for coquaternions |
spellingShingle |
Mathematica tools for coquaternions Falcão, M. I. Coquaternions Coquaternionic polynomials Admissible classes n^th roots of a coquaternion Symbolic computation Ciências Naturais::Matemáticas Science & Technology |
title_short |
Mathematica tools for coquaternions |
title_full |
Mathematica tools for coquaternions |
title_fullStr |
Mathematica tools for coquaternions |
title_full_unstemmed |
Mathematica tools for coquaternions |
title_sort |
Mathematica tools for coquaternions |
author |
Falcão, M. I. |
author_facet |
Falcão, M. I. Miranda, Fernando Severino, Ricardo Soares, M. J. |
author_role |
author |
author2 |
Miranda, Fernando Severino, Ricardo Soares, M. J. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Falcão, M. I. Miranda, Fernando Severino, Ricardo Soares, M. J. |
dc.subject.por.fl_str_mv |
Coquaternions Coquaternionic polynomials Admissible classes n^th roots of a coquaternion Symbolic computation Ciências Naturais::Matemáticas Science & Technology |
topic |
Coquaternions Coquaternionic polynomials Admissible classes n^th roots of a coquaternion Symbolic computation Ciências Naturais::Matemáticas Science & Technology |
description |
Coquaternions form a four dimensional real algebra generalizing complex numbers and were introduced by James Cockle at about the same time that Hamilton discovered the famous algebra of quaternions. Although not as popular as quaternions, in recent years one can observe an emerging interest among mathematicians and physicists on the study of these numbers. In this work we revisit a Mathematica package for implementing the algebra of coquaternions - Coquaternions - and discuss a set of Mathematica functions - CoqPolynomi al - to deal with coquaternionic polynomials. These two sets of functions provide the basic tools necessary for manipulating coquaternions and unilateral coquaternionic polynomials, reflecting, in its present form, the recent interests of the authors in the area. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/82842 |
url |
https://hdl.handle.net/1822/82842 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-030-86972-4 0302-9743 10.1007/978-3-030-86973-1_32 978-3-030-86973-1 https://link.springer.com/chapter/10.1007/978-3-030-86973-1_32 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594841343197184 |