Mathematica tools for coquaternions

Bibliographic Details
Main Author: Falcão, M. I.
Publication Date: 2021
Other Authors: Miranda, Fernando, Severino, Ricardo, Soares, M. J.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/82842
Summary: Coquaternions form a four dimensional real algebra generalizing complex numbers and were introduced by James Cockle at about the same time that Hamilton discovered the famous algebra of quaternions. Although not as popular as quaternions, in recent years one can observe an emerging interest among mathematicians and physicists on the study of these numbers. In this work we revisit a Mathematica package for implementing the algebra of coquaternions - Coquaternions - and discuss a set of Mathematica functions - CoqPolynomi al - to deal with coquaternionic polynomials. These two sets of functions provide the basic tools necessary for manipulating coquaternions and unilateral coquaternionic polynomials, reflecting, in its present form, the recent interests of the authors in the area.
id RCAP_0e2cd7bf8b7314d6d6cd741e89e70b21
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/82842
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Mathematica tools for coquaternionsCoquaternionsCoquaternionic polynomialsAdmissible classesn^th roots of a coquaternionSymbolic computationCiências Naturais::MatemáticasScience & TechnologyCoquaternions form a four dimensional real algebra generalizing complex numbers and were introduced by James Cockle at about the same time that Hamilton discovered the famous algebra of quaternions. Although not as popular as quaternions, in recent years one can observe an emerging interest among mathematicians and physicists on the study of these numbers. In this work we revisit a Mathematica package for implementing the algebra of coquaternions - Coquaternions - and discuss a set of Mathematica functions - CoqPolynomi al - to deal with coquaternionic polynomials. These two sets of functions provide the basic tools necessary for manipulating coquaternions and unilateral coquaternionic polynomials, reflecting, in its present form, the recent interests of the authors in the area.Supported by FCT - Fundacao para a Ciencia e a Tecnologia, within the Projects UIDB/00013/2020, UIDP/00013/2020 and UIDB/03182/2020.SpringerUniversidade do MinhoFalcão, M. I.Miranda, FernandoSeverino, RicardoSoares, M. J.20212021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/82842eng978-3-030-86972-40302-974310.1007/978-3-030-86973-1_32978-3-030-86973-1https://link.springer.com/chapter/10.1007/978-3-030-86973-1_32info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:14:25Zoai:repositorium.sdum.uminho.pt:1822/82842Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:43:16.713531Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Mathematica tools for coquaternions
title Mathematica tools for coquaternions
spellingShingle Mathematica tools for coquaternions
Falcão, M. I.
Coquaternions
Coquaternionic polynomials
Admissible classes
n^th roots of a coquaternion
Symbolic computation
Ciências Naturais::Matemáticas
Science & Technology
title_short Mathematica tools for coquaternions
title_full Mathematica tools for coquaternions
title_fullStr Mathematica tools for coquaternions
title_full_unstemmed Mathematica tools for coquaternions
title_sort Mathematica tools for coquaternions
author Falcão, M. I.
author_facet Falcão, M. I.
Miranda, Fernando
Severino, Ricardo
Soares, M. J.
author_role author
author2 Miranda, Fernando
Severino, Ricardo
Soares, M. J.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Falcão, M. I.
Miranda, Fernando
Severino, Ricardo
Soares, M. J.
dc.subject.por.fl_str_mv Coquaternions
Coquaternionic polynomials
Admissible classes
n^th roots of a coquaternion
Symbolic computation
Ciências Naturais::Matemáticas
Science & Technology
topic Coquaternions
Coquaternionic polynomials
Admissible classes
n^th roots of a coquaternion
Symbolic computation
Ciências Naturais::Matemáticas
Science & Technology
description Coquaternions form a four dimensional real algebra generalizing complex numbers and were introduced by James Cockle at about the same time that Hamilton discovered the famous algebra of quaternions. Although not as popular as quaternions, in recent years one can observe an emerging interest among mathematicians and physicists on the study of these numbers. In this work we revisit a Mathematica package for implementing the algebra of coquaternions - Coquaternions - and discuss a set of Mathematica functions - CoqPolynomi al - to deal with coquaternionic polynomials. These two sets of functions provide the basic tools necessary for manipulating coquaternions and unilateral coquaternionic polynomials, reflecting, in its present form, the recent interests of the authors in the area.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/82842
url https://hdl.handle.net/1822/82842
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-030-86972-4
0302-9743
10.1007/978-3-030-86973-1_32
978-3-030-86973-1
https://link.springer.com/chapter/10.1007/978-3-030-86973-1_32
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594841343197184