Does fake news have feelings?
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.2/19425 |
Summary: | Fake news spreads rapidly, creating issues and making detection harder. The purpose of this study is to determine if fake news contains sentiment polarity (positive or negative), identify the polarity of sentiment present in their textual content and determine whether sentiment polarity is a reliable indication of fake news. For this, we use a deep learning model called BERT (Bidirectional Encoder Representations from Transformers), trained on a sentiment polarity dataset to classify the polarity of sentiments from a dataset of true and fake news. The findings show that sentiment polarity is not a reliable single feature for recognizing false news correctly and must be combined with other parameters to improve classification accuracy. |
id |
RCAP_0ddaab1be9862f3a09ea817a8ba4f1c1 |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/19425 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Does fake news have feelings?Fake newsSentiment analysisDeep learningBERTFake news spreads rapidly, creating issues and making detection harder. The purpose of this study is to determine if fake news contains sentiment polarity (positive or negative), identify the polarity of sentiment present in their textual content and determine whether sentiment polarity is a reliable indication of fake news. For this, we use a deep learning model called BERT (Bidirectional Encoder Representations from Transformers), trained on a sentiment polarity dataset to classify the polarity of sentiments from a dataset of true and fake news. The findings show that sentiment polarity is not a reliable single feature for recognizing false news correctly and must be combined with other parameters to improve classification accuracy.Elsevier B.V.Repositório AbertoLaroca Mendes Pinto, HerbertRocio, VitorCunha, António2025-01-28T14:33:52Z20242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/19425eng1877-050910.1016/j.procs.2024.06.392info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T09:51:21Zoai:repositorioaberto.uab.pt:10400.2/19425Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:10:15.362832Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Does fake news have feelings? |
title |
Does fake news have feelings? |
spellingShingle |
Does fake news have feelings? Laroca Mendes Pinto, Herbert Fake news Sentiment analysis Deep learning BERT |
title_short |
Does fake news have feelings? |
title_full |
Does fake news have feelings? |
title_fullStr |
Does fake news have feelings? |
title_full_unstemmed |
Does fake news have feelings? |
title_sort |
Does fake news have feelings? |
author |
Laroca Mendes Pinto, Herbert |
author_facet |
Laroca Mendes Pinto, Herbert Rocio, Vitor Cunha, António |
author_role |
author |
author2 |
Rocio, Vitor Cunha, António |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Laroca Mendes Pinto, Herbert Rocio, Vitor Cunha, António |
dc.subject.por.fl_str_mv |
Fake news Sentiment analysis Deep learning BERT |
topic |
Fake news Sentiment analysis Deep learning BERT |
description |
Fake news spreads rapidly, creating issues and making detection harder. The purpose of this study is to determine if fake news contains sentiment polarity (positive or negative), identify the polarity of sentiment present in their textual content and determine whether sentiment polarity is a reliable indication of fake news. For this, we use a deep learning model called BERT (Bidirectional Encoder Representations from Transformers), trained on a sentiment polarity dataset to classify the polarity of sentiments from a dataset of true and fake news. The findings show that sentiment polarity is not a reliable single feature for recognizing false news correctly and must be combined with other parameters to improve classification accuracy. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024 2024-01-01T00:00:00Z 2025-01-28T14:33:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/19425 |
url |
http://hdl.handle.net/10400.2/19425 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1877-0509 10.1016/j.procs.2024.06.392 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599122270060544 |