Does fake news have feelings?

Bibliographic Details
Main Author: Laroca Mendes Pinto, Herbert
Publication Date: 2024
Other Authors: Rocio, Vitor, Cunha, António
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.2/19425
Summary: Fake news spreads rapidly, creating issues and making detection harder. The purpose of this study is to determine if fake news contains sentiment polarity (positive or negative), identify the polarity of sentiment present in their textual content and determine whether sentiment polarity is a reliable indication of fake news. For this, we use a deep learning model called BERT (Bidirectional Encoder Representations from Transformers), trained on a sentiment polarity dataset to classify the polarity of sentiments from a dataset of true and fake news. The findings show that sentiment polarity is not a reliable single feature for recognizing false news correctly and must be combined with other parameters to improve classification accuracy.
id RCAP_0ddaab1be9862f3a09ea817a8ba4f1c1
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/19425
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Does fake news have feelings?Fake newsSentiment analysisDeep learningBERTFake news spreads rapidly, creating issues and making detection harder. The purpose of this study is to determine if fake news contains sentiment polarity (positive or negative), identify the polarity of sentiment present in their textual content and determine whether sentiment polarity is a reliable indication of fake news. For this, we use a deep learning model called BERT (Bidirectional Encoder Representations from Transformers), trained on a sentiment polarity dataset to classify the polarity of sentiments from a dataset of true and fake news. The findings show that sentiment polarity is not a reliable single feature for recognizing false news correctly and must be combined with other parameters to improve classification accuracy.Elsevier B.V.Repositório AbertoLaroca Mendes Pinto, HerbertRocio, VitorCunha, António2025-01-28T14:33:52Z20242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/19425eng1877-050910.1016/j.procs.2024.06.392info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T09:51:21Zoai:repositorioaberto.uab.pt:10400.2/19425Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:10:15.362832Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Does fake news have feelings?
title Does fake news have feelings?
spellingShingle Does fake news have feelings?
Laroca Mendes Pinto, Herbert
Fake news
Sentiment analysis
Deep learning
BERT
title_short Does fake news have feelings?
title_full Does fake news have feelings?
title_fullStr Does fake news have feelings?
title_full_unstemmed Does fake news have feelings?
title_sort Does fake news have feelings?
author Laroca Mendes Pinto, Herbert
author_facet Laroca Mendes Pinto, Herbert
Rocio, Vitor
Cunha, António
author_role author
author2 Rocio, Vitor
Cunha, António
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Laroca Mendes Pinto, Herbert
Rocio, Vitor
Cunha, António
dc.subject.por.fl_str_mv Fake news
Sentiment analysis
Deep learning
BERT
topic Fake news
Sentiment analysis
Deep learning
BERT
description Fake news spreads rapidly, creating issues and making detection harder. The purpose of this study is to determine if fake news contains sentiment polarity (positive or negative), identify the polarity of sentiment present in their textual content and determine whether sentiment polarity is a reliable indication of fake news. For this, we use a deep learning model called BERT (Bidirectional Encoder Representations from Transformers), trained on a sentiment polarity dataset to classify the polarity of sentiments from a dataset of true and fake news. The findings show that sentiment polarity is not a reliable single feature for recognizing false news correctly and must be combined with other parameters to improve classification accuracy.
publishDate 2024
dc.date.none.fl_str_mv 2024
2024-01-01T00:00:00Z
2025-01-28T14:33:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/19425
url http://hdl.handle.net/10400.2/19425
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1877-0509
10.1016/j.procs.2024.06.392
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599122270060544