Decomposing monolitic computations for execution on the Edge for fun and profit

Bibliographic Details
Main Author: Gomes, Diogo João de Paiva
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/160380
Summary: Cloud computing is emerging in the IT industry and is being established as the standard way of providing high quality applications and services, being able to scale when neces- sary and maintaining low latency. This high availability allows new users and devices to connect which may possibly cause some saturation in the network. The edge computing paradigm has recently emerged to address raising concerns on the ability of cloud computing infrastructures (and data links connecting end user devices to such infrastructures) to receive, process, and reply to operations generated by edge devices (e.g., sensors or other more sophisticated devices) in an expedited way. One way to mitigate this challenge, put forward by the edge computing paradigm, is to decompose the computations executed by applications in smaller components that can then be pushed into the devices (either on the cloud or edge) that are in close vicinity to the location of data generation and consumption. This allows to remove pressure from network links (by avoiding to move data) and can, in particular cases, speedup the production of results to be consumed in the edge. However, achieving this intuitive vision is cumbered by several challenges, in particular: 1. How to decompose the logic of a (large) computation into smaller units; 2. Understanding the requirements for the correct processing of such smaller units; 3. Define mechanisms to compose the results of the smaller computations; 4. Effectively pushing the computations to the locations where they will be conducted and ensuring their execution despite failures. In this thesis we will start to pave the way towards such a vision by studying how to decompose computations, classifying relevant properties of a subset of classes of these computations, and exploring the design space of the runtime support to execute smaller units in an integrated way across the cloud and edge. We will focus on settings with multiple cloud datacenters potentially with a few edge locations.
id RCAP_0ccc57476573f83e69eb846f73c6017c
oai_identifier_str oai:run.unl.pt:10362/160380
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Decomposing monolitic computations for execution on the Edge for fun and profitCloudEdgeIoTComputationDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaCloud computing is emerging in the IT industry and is being established as the standard way of providing high quality applications and services, being able to scale when neces- sary and maintaining low latency. This high availability allows new users and devices to connect which may possibly cause some saturation in the network. The edge computing paradigm has recently emerged to address raising concerns on the ability of cloud computing infrastructures (and data links connecting end user devices to such infrastructures) to receive, process, and reply to operations generated by edge devices (e.g., sensors or other more sophisticated devices) in an expedited way. One way to mitigate this challenge, put forward by the edge computing paradigm, is to decompose the computations executed by applications in smaller components that can then be pushed into the devices (either on the cloud or edge) that are in close vicinity to the location of data generation and consumption. This allows to remove pressure from network links (by avoiding to move data) and can, in particular cases, speedup the production of results to be consumed in the edge. However, achieving this intuitive vision is cumbered by several challenges, in particular: 1. How to decompose the logic of a (large) computation into smaller units; 2. Understanding the requirements for the correct processing of such smaller units; 3. Define mechanisms to compose the results of the smaller computations; 4. Effectively pushing the computations to the locations where they will be conducted and ensuring their execution despite failures. In this thesis we will start to pave the way towards such a vision by studying how to decompose computations, classifying relevant properties of a subset of classes of these computations, and exploring the design space of the runtime support to execute smaller units in an integrated way across the cloud and edge. We will focus on settings with multiple cloud datacenters potentially with a few edge locations.A computação em Cloud (na Nuvem) está a crescer na indústria de Tecnologias de In- formação e está a ser estabelecida como o padrão para fornecer aplicações e serviços de qualidade, sendo capaz de serem escalados quando necessário, mantendo sempre uma rá- pida resposta. Esta grande disponibilidade permite que novos utilizadores e dispositivos se conectem de uma forma exponencial, causando saturação na rede. O paradigma da computação em Edge (na fronteira) começou a emergir para solucio- nar o problema da disponibilidade da infraestrutura de uma arquitetura em Cloud para receber e processar informação e operações recebidas por dispositivos de Edge (sensores ou outros dispositivos mais sofisticados) de uma forma rápida e eficiente. Uma forma de mitigar este problema, com ajuda da computação em Edge, passa por dividir as compu- tações que são executadas pelas aplicações em blocos de menor dimensão sendo depois processados perto da localização onde a data é criada ou consumida. Este fator permite aliviar e remover pressão das conexões entre vários dispositivos na rede, evitando trans- ferir dados e por sua vez aumentar a velocidade de saída de resultados dos dados que são consumidos. Apesar de tudo, alcançar esta visão traz alguns desafios: 1. Como decompor a lógica de grandes computações em unidades mais pequenas; 2. Entender os requisitos para um correto processamento de cada unidade; 3. Definir mecanismos que possam compor os resultados das sucessivas unidades; 4. Passar efetivamente as computações para uma localização mais ideal onde serão tratadas e assegurar a sua execução apesar da possibilidade de falhas. Nesta dissertação iremos começar a traçar o caminho para esta visão, estudando como se deve decompor computações, classificando as suas propriedades e explorar as possi- bilidades para a execução de unidades mais pequenas de uma forma integrada. Iremos focar em cenários com vários datacenters em cloud e vários dispositivos de Edge.Leitão, JoãoRUNGomes, Diogo João de Paiva2023-11-23T18:29:08Z2023-072023-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160380enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:16:03Zoai:run.unl.pt:10362/160380Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:46:40.971609Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Decomposing monolitic computations for execution on the Edge for fun and profit
title Decomposing monolitic computations for execution on the Edge for fun and profit
spellingShingle Decomposing monolitic computations for execution on the Edge for fun and profit
Gomes, Diogo João de Paiva
Cloud
Edge
IoT
Computation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Decomposing monolitic computations for execution on the Edge for fun and profit
title_full Decomposing monolitic computations for execution on the Edge for fun and profit
title_fullStr Decomposing monolitic computations for execution on the Edge for fun and profit
title_full_unstemmed Decomposing monolitic computations for execution on the Edge for fun and profit
title_sort Decomposing monolitic computations for execution on the Edge for fun and profit
author Gomes, Diogo João de Paiva
author_facet Gomes, Diogo João de Paiva
author_role author
dc.contributor.none.fl_str_mv Leitão, João
RUN
dc.contributor.author.fl_str_mv Gomes, Diogo João de Paiva
dc.subject.por.fl_str_mv Cloud
Edge
IoT
Computation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Cloud
Edge
IoT
Computation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Cloud computing is emerging in the IT industry and is being established as the standard way of providing high quality applications and services, being able to scale when neces- sary and maintaining low latency. This high availability allows new users and devices to connect which may possibly cause some saturation in the network. The edge computing paradigm has recently emerged to address raising concerns on the ability of cloud computing infrastructures (and data links connecting end user devices to such infrastructures) to receive, process, and reply to operations generated by edge devices (e.g., sensors or other more sophisticated devices) in an expedited way. One way to mitigate this challenge, put forward by the edge computing paradigm, is to decompose the computations executed by applications in smaller components that can then be pushed into the devices (either on the cloud or edge) that are in close vicinity to the location of data generation and consumption. This allows to remove pressure from network links (by avoiding to move data) and can, in particular cases, speedup the production of results to be consumed in the edge. However, achieving this intuitive vision is cumbered by several challenges, in particular: 1. How to decompose the logic of a (large) computation into smaller units; 2. Understanding the requirements for the correct processing of such smaller units; 3. Define mechanisms to compose the results of the smaller computations; 4. Effectively pushing the computations to the locations where they will be conducted and ensuring their execution despite failures. In this thesis we will start to pave the way towards such a vision by studying how to decompose computations, classifying relevant properties of a subset of classes of these computations, and exploring the design space of the runtime support to execute smaller units in an integrated way across the cloud and edge. We will focus on settings with multiple cloud datacenters potentially with a few edge locations.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-23T18:29:08Z
2023-07
2023-07-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160380
url http://hdl.handle.net/10362/160380
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596955849129984