Lexicographic polynomials of graphs and their spectra

Bibliographic Details
Main Author: Cardoso, Domingos M.
Publication Date: 2017
Other Authors: Carvalho, Paula, Rama, Paula, Simic, Slobodan K., Stanic, Zoran
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/18640
Summary: For a (simple) graph $H$ and non-negative integers $c_0,c_1,\ldots,c_d$ ($c_d \neq 0$), $p(H)=\sum_{k=0}^d{c_k \cdot H^k}$ is the lexicographic polynomial in $H$ of degree $d$, where the sum of two graphs is their join and $c_k \cdot H^k$ is the join of $c_k$ copies of $H^k$. The graph $H^k$ is the $k$th power of $H$ with respect to the lexicographic product ($H^0 = K_1$). The spectrum (if $H$ is regular) and the Laplacian spectrum (in general case) of $p(H)$ are determined in terms of the spectrum of $H$ and~$c_k$'s. Constructions of infinite families of cospectral or integral graphs are also announced.
id RCAP_0b1637fb247a1571ea1d4e207bf8bb5c
oai_identifier_str oai:ria.ua.pt:10773/18640
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Lexicographic polynomials of graphs and their spectraSpectral graph theoryLexicographic productAdjacency and Laplacian matricesCospectral graphsIntegral graphsFor a (simple) graph $H$ and non-negative integers $c_0,c_1,\ldots,c_d$ ($c_d \neq 0$), $p(H)=\sum_{k=0}^d{c_k \cdot H^k}$ is the lexicographic polynomial in $H$ of degree $d$, where the sum of two graphs is their join and $c_k \cdot H^k$ is the join of $c_k$ copies of $H^k$. The graph $H^k$ is the $k$th power of $H$ with respect to the lexicographic product ($H^0 = K_1$). The spectrum (if $H$ is regular) and the Laplacian spectrum (in general case) of $p(H)$ are determined in terms of the spectrum of $H$ and~$c_k$'s. Constructions of infinite families of cospectral or integral graphs are also announced.University of Belgrade2017-10-26T09:26:10Z2017-10-24T00:00:00Z2017-10-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18640eng1452-8630https//10.2298/AADM1702258CCardoso, Domingos M.Carvalho, PaulaRama, PaulaSimic, Slobodan K.Stanic, Zoraninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:04:14Zoai:ria.ua.pt:10773/18640Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:56:19.772331Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Lexicographic polynomials of graphs and their spectra
title Lexicographic polynomials of graphs and their spectra
spellingShingle Lexicographic polynomials of graphs and their spectra
Cardoso, Domingos M.
Spectral graph theory
Lexicographic product
Adjacency and Laplacian matrices
Cospectral graphs
Integral graphs
title_short Lexicographic polynomials of graphs and their spectra
title_full Lexicographic polynomials of graphs and their spectra
title_fullStr Lexicographic polynomials of graphs and their spectra
title_full_unstemmed Lexicographic polynomials of graphs and their spectra
title_sort Lexicographic polynomials of graphs and their spectra
author Cardoso, Domingos M.
author_facet Cardoso, Domingos M.
Carvalho, Paula
Rama, Paula
Simic, Slobodan K.
Stanic, Zoran
author_role author
author2 Carvalho, Paula
Rama, Paula
Simic, Slobodan K.
Stanic, Zoran
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Cardoso, Domingos M.
Carvalho, Paula
Rama, Paula
Simic, Slobodan K.
Stanic, Zoran
dc.subject.por.fl_str_mv Spectral graph theory
Lexicographic product
Adjacency and Laplacian matrices
Cospectral graphs
Integral graphs
topic Spectral graph theory
Lexicographic product
Adjacency and Laplacian matrices
Cospectral graphs
Integral graphs
description For a (simple) graph $H$ and non-negative integers $c_0,c_1,\ldots,c_d$ ($c_d \neq 0$), $p(H)=\sum_{k=0}^d{c_k \cdot H^k}$ is the lexicographic polynomial in $H$ of degree $d$, where the sum of two graphs is their join and $c_k \cdot H^k$ is the join of $c_k$ copies of $H^k$. The graph $H^k$ is the $k$th power of $H$ with respect to the lexicographic product ($H^0 = K_1$). The spectrum (if $H$ is regular) and the Laplacian spectrum (in general case) of $p(H)$ are determined in terms of the spectrum of $H$ and~$c_k$'s. Constructions of infinite families of cospectral or integral graphs are also announced.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-26T09:26:10Z
2017-10-24T00:00:00Z
2017-10-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/18640
url http://hdl.handle.net/10773/18640
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1452-8630
https//10.2298/AADM1702258C
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University of Belgrade
publisher.none.fl_str_mv University of Belgrade
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594194309939200