A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2014 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/1822/30773 |
Resumo: | This paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods. |
| id |
RCAP_099be07cf52d4f2b41c1e6ca55fa1271 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/30773 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issuesGlobal optimizationArtificial fish swarmFilter methodStochastic convergenceArtificial fish swarmEngenharia e Tecnologia::Outras Engenharias e TecnologiasScience & TechnologyThis paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods.Fundação para a Ciência e a Tecnologia (FCT)SpringerUniversidade do MinhoRocha, Ana Maria A. C.Costa, M. Fernanda P.Fernandes, Edite Manuela da G. P.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/30773engRocha, Ana Maria A. C., Costa, M. Fernanda P., and Fernandes, Edite M. G. P. (2014). A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues. Journal of Global Optimization, 1-25.1573-291610.1007/s10898-014-0157-3http://link.springer.com/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:49:18Zoai:repositorium.sdum.uminho.pt:1822/30773Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:05:40.084781Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
| title |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
| spellingShingle |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues Rocha, Ana Maria A. C. Global optimization Artificial fish swarm Filter method Stochastic convergence Artificial fish swarm Engenharia e Tecnologia::Outras Engenharias e Tecnologias Science & Technology |
| title_short |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
| title_full |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
| title_fullStr |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
| title_full_unstemmed |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
| title_sort |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
| author |
Rocha, Ana Maria A. C. |
| author_facet |
Rocha, Ana Maria A. C. Costa, M. Fernanda P. Fernandes, Edite Manuela da G. P. |
| author_role |
author |
| author2 |
Costa, M. Fernanda P. Fernandes, Edite Manuela da G. P. |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Rocha, Ana Maria A. C. Costa, M. Fernanda P. Fernandes, Edite Manuela da G. P. |
| dc.subject.por.fl_str_mv |
Global optimization Artificial fish swarm Filter method Stochastic convergence Artificial fish swarm Engenharia e Tecnologia::Outras Engenharias e Tecnologias Science & Technology |
| topic |
Global optimization Artificial fish swarm Filter method Stochastic convergence Artificial fish swarm Engenharia e Tecnologia::Outras Engenharias e Tecnologias Science & Technology |
| description |
This paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/30773 |
| url |
http://hdl.handle.net/1822/30773 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Rocha, Ana Maria A. C., Costa, M. Fernanda P., and Fernandes, Edite M. G. P. (2014). A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues. Journal of Global Optimization, 1-25. 1573-2916 10.1007/s10898-014-0157-3 http://link.springer.com/ |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595732384284672 |