Composition codes
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/24656 |
Summary: | In this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders G(d1,d2) that can be decomposed as the product of two 1D encoders, i.e., G(d1,d2)=G2(d2)G1(d1). Taking into account this decomposition, we obtain syndrome formers of the code directly from G1(d1) andG2(d2), in case G1(d1) andG2(d2) are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder G(d1,d2)=G2(d2)G1(d1) withG2(d2) a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes. |
id |
RCAP_098f45d0d80cf0ae07f38997ee9da7e6 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/24656 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Composition codesEncoders and syndrome formers2D composition codesMinimal 2D state-space modelsIn this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders G(d1,d2) that can be decomposed as the product of two 1D encoders, i.e., G(d1,d2)=G2(d2)G1(d1). Taking into account this decomposition, we obtain syndrome formers of the code directly from G1(d1) andG2(d2), in case G1(d1) andG2(d2) are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder G(d1,d2)=G2(d2)G1(d1) withG2(d2) a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes.American Institute of Mathematical Sciences2018-11-16T15:10:32Z2017-01-01T00:00:00Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/24656eng1930-5346DOI:10.3934/amc.2016.10.163Fornasini, EttorePinho, TelmaPinto, RaquelRocha, Paulainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:17:41Zoai:ria.ua.pt:10773/24656Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:03:42.610073Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Composition codes |
title |
Composition codes |
spellingShingle |
Composition codes Fornasini, Ettore Encoders and syndrome formers 2D composition codes Minimal 2D state-space models |
title_short |
Composition codes |
title_full |
Composition codes |
title_fullStr |
Composition codes |
title_full_unstemmed |
Composition codes |
title_sort |
Composition codes |
author |
Fornasini, Ettore |
author_facet |
Fornasini, Ettore Pinho, Telma Pinto, Raquel Rocha, Paula |
author_role |
author |
author2 |
Pinho, Telma Pinto, Raquel Rocha, Paula |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Fornasini, Ettore Pinho, Telma Pinto, Raquel Rocha, Paula |
dc.subject.por.fl_str_mv |
Encoders and syndrome formers 2D composition codes Minimal 2D state-space models |
topic |
Encoders and syndrome formers 2D composition codes Minimal 2D state-space models |
description |
In this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders G(d1,d2) that can be decomposed as the product of two 1D encoders, i.e., G(d1,d2)=G2(d2)G1(d1). Taking into account this decomposition, we obtain syndrome formers of the code directly from G1(d1) andG2(d2), in case G1(d1) andG2(d2) are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder G(d1,d2)=G2(d2)G1(d1) withG2(d2) a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017-01-01 2018-11-16T15:10:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/24656 |
url |
http://hdl.handle.net/10773/24656 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1930-5346 DOI:10.3934/amc.2016.10.163 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594253804044288 |