A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams

Detalhes bibliográficos
Autor(a) principal: Ferreira, Verónica
Data de Publicação: 2015
Outros Autores: Castagneyrol, Bastian, Koricheva, Julia, Gulis, Vladislav, Chauvet, Eric, Graça, Manuel A. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/10316/98693
https://doi.org/10.1111/brv.12125
Resumo: The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human-induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem-level process in forest streams. Here, we present a meta-analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient-enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream-reach scale. By contrast, nutrient enrichment at the litter-bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co-limitation of decomposition in streams. The magnitude of the nutrient-enrichment effect on litter decomposition was higher for wood than for leaves, and for low-quality than for high-quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta-analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low-quality plant litter inputs.
id RCAP_08bafd8a2bdc6499e5a70e143bfe7984
oai_identifier_str oai:estudogeral.uc.pt:10316/98693
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A meta-analysis of the effects of nutrient enrichment on litter decomposition in streamsclimatedecomposersdetritivoresfungilitter processingnutrient additioninorganic nutrientseutrophicationexperimental settingplant litterThe trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human-induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem-level process in forest streams. Here, we present a meta-analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient-enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream-reach scale. By contrast, nutrient enrichment at the litter-bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co-limitation of decomposition in streams. The magnitude of the nutrient-enrichment effect on litter decomposition was higher for wood than for leaves, and for low-quality than for high-quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta-analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low-quality plant litter inputs.3F10-AC72-52D0 | Verónica Ferreirainfo:eu-repo/semantics/publishedVersion2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/98693https://hdl.handle.net/10316/98693https://doi.org/10.1111/brv.12125eng2-s2.0-84937164673cv-prod-702505Ferreira, VerónicaCastagneyrol, BastianKoricheva, JuliaGulis, VladislavChauvet, EricGraça, Manuel A. S.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2022-02-09T11:03:55Zoai:estudogeral.uc.pt:10316/98693Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:47:25.578139Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
title A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
spellingShingle A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
Ferreira, Verónica
climate
decomposers
detritivores
fungi
litter processing
nutrient addition
inorganic nutrients
eutrophication
experimental setting
plant litter
title_short A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
title_full A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
title_fullStr A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
title_full_unstemmed A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
title_sort A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams
author Ferreira, Verónica
author_facet Ferreira, Verónica
Castagneyrol, Bastian
Koricheva, Julia
Gulis, Vladislav
Chauvet, Eric
Graça, Manuel A. S.
author_role author
author2 Castagneyrol, Bastian
Koricheva, Julia
Gulis, Vladislav
Chauvet, Eric
Graça, Manuel A. S.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Ferreira, Verónica
Castagneyrol, Bastian
Koricheva, Julia
Gulis, Vladislav
Chauvet, Eric
Graça, Manuel A. S.
dc.subject.por.fl_str_mv climate
decomposers
detritivores
fungi
litter processing
nutrient addition
inorganic nutrients
eutrophication
experimental setting
plant litter
topic climate
decomposers
detritivores
fungi
litter processing
nutrient addition
inorganic nutrients
eutrophication
experimental setting
plant litter
description The trophic state of many streams is likely to deteriorate in the future due to the continuing increase in human-induced nutrient availability. Therefore, it is of fundamental importance to understand how nutrient enrichment affects plant litter decomposition, a key ecosystem-level process in forest streams. Here, we present a meta-analysis of 99 studies published between 1970 and 2012 that reported the effects of nutrient enrichment on litter decomposition in running waters. When considering the entire database, which consisted of 840 case studies, nutrient enrichment stimulated litter decomposition rate by approximately 50%. The stimulation was higher when the background nutrient concentrations were low and the magnitude of the nutrient enrichment was high, suggesting that oligotrophic streams are most vulnerable to nutrient enrichment. The magnitude of the nutrient-enrichment effect on litter decomposition was higher in the laboratory than in the field experiments, suggesting that laboratory experiments overestimate the effect and their results should be interpreted with caution. Among field experiments, effects of nutrient enrichment were smaller in the correlative than in the manipulative experiments since in the former the effects of nutrient enrichment on litter decomposition were likely confounded by other environmental factors, e.g. pollutants other than nutrients commonly found in streams impacted by human activity. However, primary studies addressing the effect of multiple stressors on litter decomposition are still few and thus it was not possible to consider the interaction between factors in this review. In field manipulative experiments, the effect of nutrient enrichment on litter decomposition depended on the scale at which the nutrients were added: stream reach > streamside channel > litter bag. This may have resulted from a more uniform and continuous exposure of microbes and detritivores to nutrient enrichment at the stream-reach scale. By contrast, nutrient enrichment at the litter-bag scale, often by using diffusing substrates, does not provide uniform controllable nutrient release at either temporal or spatial scales, suggesting that this approach should be abandoned. In field manipulative experiments, the addition of both nitrogen (N) and phosphorus (P) resulted in stronger stimulation of litter decomposition than the addition of N or P alone, suggesting that there might be nutrient co-limitation of decomposition in streams. The magnitude of the nutrient-enrichment effect on litter decomposition was higher for wood than for leaves, and for low-quality than for high-quality leaves. The effect of nutrient enrichment on litter decomposition may also depend on climate. The tendency for larger effect size in colder regions suggests that patterns of biogeography of invertebrate decomposers may be modulating the effect of nutrient enrichment on litter decomposition. Although studies in temperate environments were overrepresented in our database, our meta-analysis suggests that the effect of nutrient enrichment might be strongest in cold oligotrophic streams that depend on low-quality plant litter inputs.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/98693
https://hdl.handle.net/10316/98693
https://doi.org/10.1111/brv.12125
url https://hdl.handle.net/10316/98693
https://doi.org/10.1111/brv.12125
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2-s2.0-84937164673
cv-prod-702505
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602474192142336