Numerical experiments for segmenting medical images using level sets

Bibliographic Details
Main Author: Araújo, A.
Publication Date: 2006
Other Authors: Comissiong, D. M. G., Stadler, G.
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/11323
Summary: Image segmentation is the process by which objects are separated from background information. Structural segmentation from 2D and 3D images is an important step in the analysis of medical image data. In this technical report, we utilize level set algorithms and active contours without edges to segment two and three-dimensional image data. Besides synthetical data, we also use magnetic resonance images of the human brain provided by the Institute of Biomedical Research in Light and Images of the University of Coimbra (IBILI)
id RCAP_085aeb16ebbd0aa0e9f76fdb2314d1e1
oai_identifier_str oai:estudogeral.uc.pt:10316/11323
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Numerical experiments for segmenting medical images using level setsImage segmentationActive contoursLevel setsMagnetic resonance imagesImage segmentation is the process by which objects are separated from background information. Structural segmentation from 2D and 3D images is an important step in the analysis of medical image data. In this technical report, we utilize level set algorithms and active contours without edges to segment two and three-dimensional image data. Besides synthetical data, we also use magnetic resonance images of the human brain provided by the Institute of Biomedical Research in Light and Images of the University of Coimbra (IBILI)Centro de Matemática da Universidade de Coimbra2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11323https://hdl.handle.net/10316/11323engPré-Publicações DMUC. 06-51 (2006)Araújo, A.Comissiong, D. M. G.Stadler, G.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-01-20T13:52:41Zoai:estudogeral.uc.pt:10316/11323Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:22.560411Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Numerical experiments for segmenting medical images using level sets
title Numerical experiments for segmenting medical images using level sets
spellingShingle Numerical experiments for segmenting medical images using level sets
Araújo, A.
Image segmentation
Active contours
Level sets
Magnetic resonance images
title_short Numerical experiments for segmenting medical images using level sets
title_full Numerical experiments for segmenting medical images using level sets
title_fullStr Numerical experiments for segmenting medical images using level sets
title_full_unstemmed Numerical experiments for segmenting medical images using level sets
title_sort Numerical experiments for segmenting medical images using level sets
author Araújo, A.
author_facet Araújo, A.
Comissiong, D. M. G.
Stadler, G.
author_role author
author2 Comissiong, D. M. G.
Stadler, G.
author2_role author
author
dc.contributor.author.fl_str_mv Araújo, A.
Comissiong, D. M. G.
Stadler, G.
dc.subject.por.fl_str_mv Image segmentation
Active contours
Level sets
Magnetic resonance images
topic Image segmentation
Active contours
Level sets
Magnetic resonance images
description Image segmentation is the process by which objects are separated from background information. Structural segmentation from 2D and 3D images is an important step in the analysis of medical image data. In this technical report, we utilize level set algorithms and active contours without edges to segment two and three-dimensional image data. Besides synthetical data, we also use magnetic resonance images of the human brain provided by the Institute of Biomedical Research in Light and Images of the University of Coimbra (IBILI)
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/11323
https://hdl.handle.net/10316/11323
url https://hdl.handle.net/10316/11323
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pré-Publicações DMUC. 06-51 (2006)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602339477389313