Introducing Mplots
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/178758 |
Summary: | Funding Information: We gratefully acknowledge funding from Accenture, Mitsubishi Labs and NSF Award 2103976. Publisher Copyright: © The Author(s) 2024. |
id |
RCAP_0790f2a1cf90d39e9c9e70e2b731fbe3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/178758 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Introducing Mplotsscaling time series recurrence plots to massive datasetsAnomaliesSimilarity matrixTime seriesInformation SystemsHardware and ArchitectureComputer Networks and CommunicationsInformation Systems and ManagementFunding Information: We gratefully acknowledge funding from Accenture, Mitsubishi Labs and NSF Award 2103976. Publisher Copyright: © The Author(s) 2024.Time series similarity matrices (informally, recurrence plots or dot-plots), are useful tools for time series data mining. They can be used to guide data exploration, and various useful features can be derived from them and then fed into downstream analytics. However, time series similarity matrices suffer from very poor scalability, taxing both time and memory requirements. In this work, we introduce novel ideas that allow us to scale the largest time series similarity matrices that can be examined by several orders of magnitude. The first idea is a novel algorithm to compute the matrices in a way that removes dependency on the subsequence length. This algorithm is so fast that it allows us to now address datasets where the memory limitations begin to dominate. Our second novel contribution is a multiscale algorithm that computes an approximation of the matrix appropriate for the limitations of the user’s memory/screen-resolution, then performs a local, just-in-time recomputation of any region that the user wishes to zoom-in on. Given that this largely removes time and space barriers, human visual attention then becomes the bottleneck. We further introduce algorithms that search massive matrices with quadrillions of cells and then prioritize regions for later examination by either humans or algorithms. We will demonstrate the utility of our ideas for data exploration, segmentation, and classification in domains as diverse as astronomy, bioinformatics, entomology, and wildlife monitoring.LIBPhys-UNLFaculdade de Ciências e Tecnologia (FCT)RUNShahcheraghi, MaryamMercer, RyanRodrigues, João Manuel de AlmeidaDer, AudreyGamboa, Hugo Filipe SilveiraZimmerman, ZacharyMauck, KerryKeogh, Eamonn2025-02-10T21:17:05Z2024-122024-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/178758eng2196-1115PURE: 106889615https://doi.org/10.1186/s40537-024-00954-1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T01:41:40Zoai:run.unl.pt:10362/178758Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:39:30.430166Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Introducing Mplots scaling time series recurrence plots to massive datasets |
title |
Introducing Mplots |
spellingShingle |
Introducing Mplots Shahcheraghi, Maryam Anomalies Similarity matrix Time series Information Systems Hardware and Architecture Computer Networks and Communications Information Systems and Management |
title_short |
Introducing Mplots |
title_full |
Introducing Mplots |
title_fullStr |
Introducing Mplots |
title_full_unstemmed |
Introducing Mplots |
title_sort |
Introducing Mplots |
author |
Shahcheraghi, Maryam |
author_facet |
Shahcheraghi, Maryam Mercer, Ryan Rodrigues, João Manuel de Almeida Der, Audrey Gamboa, Hugo Filipe Silveira Zimmerman, Zachary Mauck, Kerry Keogh, Eamonn |
author_role |
author |
author2 |
Mercer, Ryan Rodrigues, João Manuel de Almeida Der, Audrey Gamboa, Hugo Filipe Silveira Zimmerman, Zachary Mauck, Kerry Keogh, Eamonn |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
LIBPhys-UNL Faculdade de Ciências e Tecnologia (FCT) RUN |
dc.contributor.author.fl_str_mv |
Shahcheraghi, Maryam Mercer, Ryan Rodrigues, João Manuel de Almeida Der, Audrey Gamboa, Hugo Filipe Silveira Zimmerman, Zachary Mauck, Kerry Keogh, Eamonn |
dc.subject.por.fl_str_mv |
Anomalies Similarity matrix Time series Information Systems Hardware and Architecture Computer Networks and Communications Information Systems and Management |
topic |
Anomalies Similarity matrix Time series Information Systems Hardware and Architecture Computer Networks and Communications Information Systems and Management |
description |
Funding Information: We gratefully acknowledge funding from Accenture, Mitsubishi Labs and NSF Award 2103976. Publisher Copyright: © The Author(s) 2024. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 2024-12-01T00:00:00Z 2025-02-10T21:17:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/178758 |
url |
http://hdl.handle.net/10362/178758 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2196-1115 PURE: 106889615 https://doi.org/10.1186/s40537-024-00954-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598778413678592 |