Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase

Detalhes bibliográficos
Autor(a) principal: Mendes, Ana Isabel
Data de Publicação: 2011
Outros Autores: Matos, Paulo, Moniz, Sónia, Luz, Simão, Amaral, Margarida D., Farinha, Carlos M., Jordan, Peter
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.18/242
Resumo: Members of the WNK (with-no-lysine [K]) subfamily of protein kinases regulate various ion channels involved in sodium, potassium, and chloride homeostasis by either inducing their phosphorylation or regulating the number of channel proteins expressed at the cell surface. Here, we describe findings demonstrating that the cell surface expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is also regulated by WNK4 in mammalian cells. This effect of WNK4 is independent of the presence of kinase and involves interaction with and inhibition of spleen tyrosine kinase (Syk), which phosphorylates Tyr512 in the first nucleotide-binding domain 1 (NBD1) of CFTR. Transfection of catalytically active Syk into CFTR-expressing baby hamster kidney cells reduces the cell surface expression of CFTR, whereas that of WNK4 promotes it. This is shown by biotinylation of cell surface proteins, immunofluorescence microscopy, and functional efflux assays. Mutation of Tyr512 to either glutamic acid or phenylalanine is sufficient to alter CFTR surface levels. In human airway epithelial cells, downregulation of endogenous Syk and WNK4 confirms their roles as physiologic regulators of CFTR surface expression. Together, our results show that Tyr512 phosphorylation is a novel signal regulating the prevalence of CFTR at the cell surface and that WNK4 and Syk perform an antagonistic role in this process.
id RCAP_05e13d7215edbe1b896a2c5af260a8a7
oai_identifier_str oai:repositorio.insa.pt:10400.18/242
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine KinaseVias de Transdução de Sinal e Patologias AssociadasProtein kinaseCystic FibrosisSpleen tyrosine kinaseWNKCell surface proteinMembrane trafficMembers of the WNK (with-no-lysine [K]) subfamily of protein kinases regulate various ion channels involved in sodium, potassium, and chloride homeostasis by either inducing their phosphorylation or regulating the number of channel proteins expressed at the cell surface. Here, we describe findings demonstrating that the cell surface expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is also regulated by WNK4 in mammalian cells. This effect of WNK4 is independent of the presence of kinase and involves interaction with and inhibition of spleen tyrosine kinase (Syk), which phosphorylates Tyr512 in the first nucleotide-binding domain 1 (NBD1) of CFTR. Transfection of catalytically active Syk into CFTR-expressing baby hamster kidney cells reduces the cell surface expression of CFTR, whereas that of WNK4 promotes it. This is shown by biotinylation of cell surface proteins, immunofluorescence microscopy, and functional efflux assays. Mutation of Tyr512 to either glutamic acid or phenylalanine is sufficient to alter CFTR surface levels. In human airway epithelial cells, downregulation of endogenous Syk and WNK4 confirms their roles as physiologic regulators of CFTR surface expression. Together, our results show that Tyr512 phosphorylation is a novel signal regulating the prevalence of CFTR at the cell surface and that WNK4 and Syk perform an antagonistic role in this process.American Society for MicrobiologyRepositório Científico do Instituto Nacional de SaúdeMendes, Ana IsabelMatos, PauloMoniz, SóniaLuz, SimãoAmaral, Margarida D.Farinha, Carlos M.Jordan, Peter2011-10-04T15:05:30Z2011-102011-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.18/242eng0270-7306doi:10.1128/MCB.05152-11info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:07:28Zoai:repositorio.insa.pt:10400.18/242Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:22:17.149178Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
title Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
spellingShingle Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
Mendes, Ana Isabel
Vias de Transdução de Sinal e Patologias Associadas
Protein kinase
Cystic Fibrosis
Spleen tyrosine kinase
WNK
Cell surface protein
Membrane traffic
title_short Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
title_full Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
title_fullStr Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
title_full_unstemmed Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
title_sort Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase
author Mendes, Ana Isabel
author_facet Mendes, Ana Isabel
Matos, Paulo
Moniz, Sónia
Luz, Simão
Amaral, Margarida D.
Farinha, Carlos M.
Jordan, Peter
author_role author
author2 Matos, Paulo
Moniz, Sónia
Luz, Simão
Amaral, Margarida D.
Farinha, Carlos M.
Jordan, Peter
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Mendes, Ana Isabel
Matos, Paulo
Moniz, Sónia
Luz, Simão
Amaral, Margarida D.
Farinha, Carlos M.
Jordan, Peter
dc.subject.por.fl_str_mv Vias de Transdução de Sinal e Patologias Associadas
Protein kinase
Cystic Fibrosis
Spleen tyrosine kinase
WNK
Cell surface protein
Membrane traffic
topic Vias de Transdução de Sinal e Patologias Associadas
Protein kinase
Cystic Fibrosis
Spleen tyrosine kinase
WNK
Cell surface protein
Membrane traffic
description Members of the WNK (with-no-lysine [K]) subfamily of protein kinases regulate various ion channels involved in sodium, potassium, and chloride homeostasis by either inducing their phosphorylation or regulating the number of channel proteins expressed at the cell surface. Here, we describe findings demonstrating that the cell surface expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is also regulated by WNK4 in mammalian cells. This effect of WNK4 is independent of the presence of kinase and involves interaction with and inhibition of spleen tyrosine kinase (Syk), which phosphorylates Tyr512 in the first nucleotide-binding domain 1 (NBD1) of CFTR. Transfection of catalytically active Syk into CFTR-expressing baby hamster kidney cells reduces the cell surface expression of CFTR, whereas that of WNK4 promotes it. This is shown by biotinylation of cell surface proteins, immunofluorescence microscopy, and functional efflux assays. Mutation of Tyr512 to either glutamic acid or phenylalanine is sufficient to alter CFTR surface levels. In human airway epithelial cells, downregulation of endogenous Syk and WNK4 confirms their roles as physiologic regulators of CFTR surface expression. Together, our results show that Tyr512 phosphorylation is a novel signal regulating the prevalence of CFTR at the cell surface and that WNK4 and Syk perform an antagonistic role in this process.
publishDate 2011
dc.date.none.fl_str_mv 2011-10-04T15:05:30Z
2011-10
2011-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/242
url http://hdl.handle.net/10400.18/242
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0270-7306
doi:10.1128/MCB.05152-11
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Society for Microbiology
publisher.none.fl_str_mv American Society for Microbiology
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599248752443392