The Moore-Penrose inverse of a factorization
Main Author: | |
---|---|
Publication Date: | 2003 |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/3237 |
Summary: | In this paper, we consider the product of matrices $PAQ$, where $A$ is von Neumann regular and there exist $P^{\prime }$ and $Q^{\prime }$ such that $P^{\prime }PA=A=AQQ^{\prime }$. We give necessary and sufficient conditions in order to $PAQ$ be Moore-Penrose invertible, extending known characterizations. Finally, an application is given to matrices over separative regular rings. |
id |
RCAP_03b4bc4d5dedb12e12bcbe56a3c1da21 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/3237 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
The Moore-Penrose inverse of a factorizationMatrices over ringsVon Neumann regularityMoore-Penrose invertibilityFactorizationSeparative regular ringsScience & TechnologyIn this paper, we consider the product of matrices $PAQ$, where $A$ is von Neumann regular and there exist $P^{\prime }$ and $Q^{\prime }$ such that $P^{\prime }PA=A=AQQ^{\prime }$. We give necessary and sufficient conditions in order to $PAQ$ be Moore-Penrose invertible, extending known characterizations. Finally, an application is given to matrices over separative regular rings.Fundação para a Ciência e a Tecnologia (FCT).Programa de Desenvolvimento Educativo para Portugal III (PRODEP III) - proj. 5.3/N/189.007/00).Elsevier B.V.Universidade do MinhoPatrício, Pedro20032003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/3237eng0024-379510.1016/S0024-3795(03)00391-4info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T03:50:56Zoai:repositorium.sdum.uminho.pt:1822/3237Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:40:49.302369Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
The Moore-Penrose inverse of a factorization |
title |
The Moore-Penrose inverse of a factorization |
spellingShingle |
The Moore-Penrose inverse of a factorization Patrício, Pedro Matrices over rings Von Neumann regularity Moore-Penrose invertibility Factorization Separative regular rings Science & Technology |
title_short |
The Moore-Penrose inverse of a factorization |
title_full |
The Moore-Penrose inverse of a factorization |
title_fullStr |
The Moore-Penrose inverse of a factorization |
title_full_unstemmed |
The Moore-Penrose inverse of a factorization |
title_sort |
The Moore-Penrose inverse of a factorization |
author |
Patrício, Pedro |
author_facet |
Patrício, Pedro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Patrício, Pedro |
dc.subject.por.fl_str_mv |
Matrices over rings Von Neumann regularity Moore-Penrose invertibility Factorization Separative regular rings Science & Technology |
topic |
Matrices over rings Von Neumann regularity Moore-Penrose invertibility Factorization Separative regular rings Science & Technology |
description |
In this paper, we consider the product of matrices $PAQ$, where $A$ is von Neumann regular and there exist $P^{\prime }$ and $Q^{\prime }$ such that $P^{\prime }PA=A=AQQ^{\prime }$. We give necessary and sufficient conditions in order to $PAQ$ be Moore-Penrose invertible, extending known characterizations. Finally, an application is given to matrices over separative regular rings. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 2003-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/3237 |
url |
https://hdl.handle.net/1822/3237 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/S0024-3795(03)00391-4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594815005065216 |