Office building participation in demand response programs supported by intelligent lighting management
| Main Author: | |
|---|---|
| Publication Date: | 2018 |
| Other Authors: | , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.22/17120 |
Summary: | According to importance of demand response programs in smart grids and microgrids, many efforts have been made to change the consumption patterns of the users, and the use of renewable resources has also increased. Significant part of energy consumption belongs to buildings such as residential, commercial, and office buildings. Many buildings are equipping with components that can be used for the participation in demand response programs. The SCADA system plays a key role in this context, which enables the building operator to have control and monitor the consumption and generation. This paper presents a real implementation of an optimization based SCADA system, which employs several controlling and monitoring methods in order to manage the consumption and generation of the building for decision support and participating in demand response events. Since the air conditioning devices are suitable controllable appliances for direct load control demand response, and lighting system as flexible loads for reduction and curtailment, they can play a key role in the scope of demand response programs. In this system, several real controller components manage the consumption of lighting system and air conditioning of the building based on an optimization model. In the case study of the paper, the SCADA system is considered as a player of an aggregation model, which is considered as demand response managing entity, and its performance during demand response events will be surveyed. The obtained results show that with adequate small reduction in the lighting system and air conditioning devices, the electricity customers are able to actively participate in the electricity markets using demand response programs and also for internal efficient use of electricity. |
| id |
RCAP_02d7155f2ec1fe8c97ef313652172e79 |
|---|---|
| oai_identifier_str |
oai:recipp.ipp.pt:10400.22/17120 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Office building participation in demand response programs supported by intelligent lighting managementDemand responseOptimizationSCADAAggregationAccording to importance of demand response programs in smart grids and microgrids, many efforts have been made to change the consumption patterns of the users, and the use of renewable resources has also increased. Significant part of energy consumption belongs to buildings such as residential, commercial, and office buildings. Many buildings are equipping with components that can be used for the participation in demand response programs. The SCADA system plays a key role in this context, which enables the building operator to have control and monitor the consumption and generation. This paper presents a real implementation of an optimization based SCADA system, which employs several controlling and monitoring methods in order to manage the consumption and generation of the building for decision support and participating in demand response events. Since the air conditioning devices are suitable controllable appliances for direct load control demand response, and lighting system as flexible loads for reduction and curtailment, they can play a key role in the scope of demand response programs. In this system, several real controller components manage the consumption of lighting system and air conditioning of the building based on an optimization model. In the case study of the paper, the SCADA system is considered as a player of an aggregation model, which is considered as demand response managing entity, and its performance during demand response events will be surveyed. The obtained results show that with adequate small reduction in the lighting system and air conditioning devices, the electricity customers are able to actively participate in the electricity markets using demand response programs and also for internal efficient use of electricity.SpringerREPOSITÓRIO P.PORTOKhorram Ghahfarrokhi, MahsaAbrishambaf, OmidFaria, PedroVale, Zita2021-02-24T14:54:10Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/17120eng10.1186/s42162-018-0008-4info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:02:16Zoai:recipp.ipp.pt:10400.22/17120Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:36:07.367581Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Office building participation in demand response programs supported by intelligent lighting management |
| title |
Office building participation in demand response programs supported by intelligent lighting management |
| spellingShingle |
Office building participation in demand response programs supported by intelligent lighting management Khorram Ghahfarrokhi, Mahsa Demand response Optimization SCADA Aggregation |
| title_short |
Office building participation in demand response programs supported by intelligent lighting management |
| title_full |
Office building participation in demand response programs supported by intelligent lighting management |
| title_fullStr |
Office building participation in demand response programs supported by intelligent lighting management |
| title_full_unstemmed |
Office building participation in demand response programs supported by intelligent lighting management |
| title_sort |
Office building participation in demand response programs supported by intelligent lighting management |
| author |
Khorram Ghahfarrokhi, Mahsa |
| author_facet |
Khorram Ghahfarrokhi, Mahsa Abrishambaf, Omid Faria, Pedro Vale, Zita |
| author_role |
author |
| author2 |
Abrishambaf, Omid Faria, Pedro Vale, Zita |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
| dc.contributor.author.fl_str_mv |
Khorram Ghahfarrokhi, Mahsa Abrishambaf, Omid Faria, Pedro Vale, Zita |
| dc.subject.por.fl_str_mv |
Demand response Optimization SCADA Aggregation |
| topic |
Demand response Optimization SCADA Aggregation |
| description |
According to importance of demand response programs in smart grids and microgrids, many efforts have been made to change the consumption patterns of the users, and the use of renewable resources has also increased. Significant part of energy consumption belongs to buildings such as residential, commercial, and office buildings. Many buildings are equipping with components that can be used for the participation in demand response programs. The SCADA system plays a key role in this context, which enables the building operator to have control and monitor the consumption and generation. This paper presents a real implementation of an optimization based SCADA system, which employs several controlling and monitoring methods in order to manage the consumption and generation of the building for decision support and participating in demand response events. Since the air conditioning devices are suitable controllable appliances for direct load control demand response, and lighting system as flexible loads for reduction and curtailment, they can play a key role in the scope of demand response programs. In this system, several real controller components manage the consumption of lighting system and air conditioning of the building based on an optimization model. In the case study of the paper, the SCADA system is considered as a player of an aggregation model, which is considered as demand response managing entity, and its performance during demand response events will be surveyed. The obtained results show that with adequate small reduction in the lighting system and air conditioning devices, the electricity customers are able to actively participate in the electricity markets using demand response programs and also for internal efficient use of electricity. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2021-02-24T14:54:10Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/17120 |
| url |
http://hdl.handle.net/10400.22/17120 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
10.1186/s42162-018-0008-4 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833600612313333760 |