Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | https://hdl.handle.net/1822/83717 |
Resumo: | This paper is devoted to geodesic completeness of left-invariant metrics for real and complex Lie groups. We start by establishing the Euler–Arnold formalism in the holomorphic setting. We study the real Lie group SL(2, R) and reobtain the known characterization of geodesic completeness and, in addition, present a detailed study where we investigate the maximum domain of definition of every single geodesic for every possible metric. We investigate completeness and semicompleteness of the complex geodesic flow for left-invariant holomorphic metrics and, in particular, establish a full classification for the Lie group SL(2, ℂ). |
id |
RCAP_02805c03559b981e513e2a4fe4e93be8 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/83717 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groupsGeodesic (semi)completenessEuler-Arnold equationsHolomorphic metricCiências Naturais::MatemáticasThis paper is devoted to geodesic completeness of left-invariant metrics for real and complex Lie groups. We start by establishing the Euler–Arnold formalism in the holomorphic setting. We study the real Lie group SL(2, R) and reobtain the known characterization of geodesic completeness and, in addition, present a detailed study where we investigate the maximum domain of definition of every single geodesic for every possible metric. We investigate completeness and semicompleteness of the complex geodesic flow for left-invariant holomorphic metrics and, in particular, establish a full classification for the Lie group SL(2, ℂ).The first author was financed by FCT - Fundação para a Ciência e Tecnologia, I.P. (Portugal) - through the PhD scholarship PD/BD/143019/2018. The second author was partially supported by FCT, Portugal through the sabbatical grant SFRH/BSAB/135549/2018 and through CMAT, Portugal under the project UID/MAT/00013/2013. The third author was partially supported by CMUP, Portugal, member of LASI, which is financed by national funds through FCT under the project UIDB/00144/2020 and also by CIMI, France through the project “Complex dynamics of group actions, Halphen and Painlevé systems”. Finally, all three authors benefited from CNRS (France) support through the PICS project “Dynamics of Complex ODEs and Geometry”.ElsevierUniversidade do MinhoElshafei, AhmedFerreira, Ana CristinaReis, Helena2023-022023-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/83717eng0362-546X1873-521510.1016/j.na.2023.113252113252https://www.sciencedirect.com/science/article/pii/S0362546X23000445info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:24:14Zoai:repositorium.sdum.uminho.pt:1822/83717Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:07:26.973168Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups |
title |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups |
spellingShingle |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups Elshafei, Ahmed Geodesic (semi)completeness Euler-Arnold equations Holomorphic metric Ciências Naturais::Matemáticas |
title_short |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups |
title_full |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups |
title_fullStr |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups |
title_full_unstemmed |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups |
title_sort |
Geodesic completeness of pseudo and holomorphic-Riemannian metrics on Lie groups |
author |
Elshafei, Ahmed |
author_facet |
Elshafei, Ahmed Ferreira, Ana Cristina Reis, Helena |
author_role |
author |
author2 |
Ferreira, Ana Cristina Reis, Helena |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Elshafei, Ahmed Ferreira, Ana Cristina Reis, Helena |
dc.subject.por.fl_str_mv |
Geodesic (semi)completeness Euler-Arnold equations Holomorphic metric Ciências Naturais::Matemáticas |
topic |
Geodesic (semi)completeness Euler-Arnold equations Holomorphic metric Ciências Naturais::Matemáticas |
description |
This paper is devoted to geodesic completeness of left-invariant metrics for real and complex Lie groups. We start by establishing the Euler–Arnold formalism in the holomorphic setting. We study the real Lie group SL(2, R) and reobtain the known characterization of geodesic completeness and, in addition, present a detailed study where we investigate the maximum domain of definition of every single geodesic for every possible metric. We investigate completeness and semicompleteness of the complex geodesic flow for left-invariant holomorphic metrics and, in particular, establish a full classification for the Lie group SL(2, ℂ). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 2023-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/83717 |
url |
https://hdl.handle.net/1822/83717 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0362-546X 1873-5215 10.1016/j.na.2023.113252 113252 https://www.sciencedirect.com/science/article/pii/S0362546X23000445 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595114546528256 |