Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer
Main Author: | |
---|---|
Publication Date: | 2015 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://doi.org/10.1155/2015/971908 |
Summary: | Castelli, M., Trujillo, L., & Vanneschi, L. (2015). Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer. Computational Intelligence And Neuroscience, 2015, [971908]. https://doi.org/10.1155/2015/971908 |
id |
RCAP_02208b95267ae60f6dfc86541fc22f45 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/71193 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search OptimizerNeuroscience(all)Computer Science(all)Mathematics(all)SDG 7 - Affordable and Clean EnergyCastelli, M., Trujillo, L., & Vanneschi, L. (2015). Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer. Computational Intelligence And Neuroscience, 2015, [971908]. https://doi.org/10.1155/2015/971908Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCastelli, MauroTrujillo, LeonardoVanneschi, Leonardo2019-05-29T22:08:14Z2015-01-012015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article8application/pdfhttps://doi.org/10.1155/2015/971908eng1687-5265PURE: 13514750http://www.scopus.com/inward/record.url?scp=84935915289&partnerID=8YFLogxKhttps://doi.org/10.1155/2015/971908info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:39:49Zoai:run.unl.pt:10362/71193Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:10:57.117161Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer |
title |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer |
spellingShingle |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer Castelli, Mauro Neuroscience(all) Computer Science(all) Mathematics(all) SDG 7 - Affordable and Clean Energy |
title_short |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer |
title_full |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer |
title_fullStr |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer |
title_full_unstemmed |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer |
title_sort |
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer |
author |
Castelli, Mauro |
author_facet |
Castelli, Mauro Trujillo, Leonardo Vanneschi, Leonardo |
author_role |
author |
author2 |
Trujillo, Leonardo Vanneschi, Leonardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Castelli, Mauro Trujillo, Leonardo Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Neuroscience(all) Computer Science(all) Mathematics(all) SDG 7 - Affordable and Clean Energy |
topic |
Neuroscience(all) Computer Science(all) Mathematics(all) SDG 7 - Affordable and Clean Energy |
description |
Castelli, M., Trujillo, L., & Vanneschi, L. (2015). Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer. Computational Intelligence And Neuroscience, 2015, [971908]. https://doi.org/10.1155/2015/971908 |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2015-01-01T00:00:00Z 2019-05-29T22:08:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1155/2015/971908 |
url |
https://doi.org/10.1155/2015/971908 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1687-5265 PURE: 13514750 http://www.scopus.com/inward/record.url?scp=84935915289&partnerID=8YFLogxK https://doi.org/10.1155/2015/971908 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596495264219136 |