Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection

Bibliographic Details
Main Author: Kurunathan, John Harrison
Publication Date: 2021
Other Authors: Li, Kai, Ni, Wei, Tovar, Eduardo, Dressler, Falko
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/18804
Summary: Autonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV.
id RCAP_01e607f502e0de9db185e077e73589f8
oai_identifier_str oai:recipp.ipp.pt:10400.22/18804
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data CollectionUAV-aided WSNAutonomous UAVCruise controlDeep reinforcement learningAutonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV.REPOSITÓRIO P.PORTOKurunathan, John HarrisonLi, KaiNi, WeiTovar, EduardoDressler, Falko2021-11-02T10:42:58Z2021-10-042021-10-04T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.22/18804eng10.1109/LCN52139.2021.9525022info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:32:53Zoai:recipp.ipp.pt:10400.22/18804Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:59:52.610519Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
title Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
spellingShingle Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
Kurunathan, John Harrison
UAV-aided WSN
Autonomous UAV
Cruise control
Deep reinforcement learning
title_short Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
title_full Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
title_fullStr Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
title_full_unstemmed Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
title_sort Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
author Kurunathan, John Harrison
author_facet Kurunathan, John Harrison
Li, Kai
Ni, Wei
Tovar, Eduardo
Dressler, Falko
author_role author
author2 Li, Kai
Ni, Wei
Tovar, Eduardo
Dressler, Falko
author2_role author
author
author
author
dc.contributor.none.fl_str_mv REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Kurunathan, John Harrison
Li, Kai
Ni, Wei
Tovar, Eduardo
Dressler, Falko
dc.subject.por.fl_str_mv UAV-aided WSN
Autonomous UAV
Cruise control
Deep reinforcement learning
topic UAV-aided WSN
Autonomous UAV
Cruise control
Deep reinforcement learning
description Autonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-02T10:42:58Z
2021-10-04
2021-10-04T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/18804
url http://hdl.handle.net/10400.22/18804
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/LCN52139.2021.9525022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600792381095936