Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/18804 |
Summary: | Autonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV. |
id |
RCAP_01e607f502e0de9db185e077e73589f8 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/18804 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data CollectionUAV-aided WSNAutonomous UAVCruise controlDeep reinforcement learningAutonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV.REPOSITÓRIO P.PORTOKurunathan, John HarrisonLi, KaiNi, WeiTovar, EduardoDressler, Falko2021-11-02T10:42:58Z2021-10-042021-10-04T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.22/18804eng10.1109/LCN52139.2021.9525022info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:32:53Zoai:recipp.ipp.pt:10400.22/18804Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:59:52.610519Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection |
title |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection |
spellingShingle |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection Kurunathan, John Harrison UAV-aided WSN Autonomous UAV Cruise control Deep reinforcement learning |
title_short |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection |
title_full |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection |
title_fullStr |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection |
title_full_unstemmed |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection |
title_sort |
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection |
author |
Kurunathan, John Harrison |
author_facet |
Kurunathan, John Harrison Li, Kai Ni, Wei Tovar, Eduardo Dressler, Falko |
author_role |
author |
author2 |
Li, Kai Ni, Wei Tovar, Eduardo Dressler, Falko |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Kurunathan, John Harrison Li, Kai Ni, Wei Tovar, Eduardo Dressler, Falko |
dc.subject.por.fl_str_mv |
UAV-aided WSN Autonomous UAV Cruise control Deep reinforcement learning |
topic |
UAV-aided WSN Autonomous UAV Cruise control Deep reinforcement learning |
description |
Autonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-02T10:42:58Z 2021-10-04 2021-10-04T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/18804 |
url |
http://hdl.handle.net/10400.22/18804 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/LCN52139.2021.9525022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600792381095936 |