Export Ready — 

In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)

Bibliographic Details
Main Author: Afonso, João
Publication Date: 2022
Other Authors: Guedes, Cristina M., Teixeira, Alfredo, Rema, Paulo, Silva, Severiano
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/26733
Summary: Senegalese sole (Solea senegalensis) has been considered a promising new flatfish species for Mediterranean marine fish farming. Accurate prediction of fillet traits in live animals may allow for more efficient control of muscle deposition in fish. In this sense, this study was undertaken to develop a non-invasive method to predict in vivo fish fillet volume and yield using real-time ultrasonography (RTU). The trial was conducted with 44 market weight Senegalese sole (298.54 ± 87.30 g). Fish were scanned with an Aloka SSD 500V with a 7.5 MHz probe. Ten RTU cross-sectional images were taken from the operculum to the caudal fin at regular intervals. These images were analyzed using Fiji software. These data were then used to estimate the partial volumes of the fillet. Actual fillet volume was determined using Archimedes’ principle. Simple and stepwise multiple regression analyses were then used to develop prediction models of fillet volume and yield. The most cranial RTU sections of the fish fillet were the best single predictors of both fillet volume and fillet yield and were the ones included in the best stepwise models. The best RTU slice area explained 82% of the variation observed in fillet volume, but the other RTU slice areas used as predictors of fillet volume showed poor to moderate accuracy (0.035 ≤ R2 ≤ 0.615). Single RTU partial volumes showed poor to very high accuracy (0.395 ≤ R2 ≤ 0.970) as predictors of fillet volume. The best stepwise model based on the RTU slice areas included three independent variables and explained 88.3% of the observed variation. The best stepwise models based on RTU partial volumes (single volumes and/or combinations of single volumes) explained about 97% of the variation observed in fillet volume. Two RTU volume traits, V1–5 + V6–9, and V1+()+9, showed to be practically direct predictors of the actual fillet volume, explaining, respectively, 97% and 96% of the variation observed in the actual fillet volume. The fillet yields show lower correlations with slice areas (r between 0.044 and 0.601) than with volumes (r between 0.288 and 0.637). While further studies are clearly necessary to better understand the potential of RTU for the estimation of fillet yield in fish in general and Senegalese sole in particular, the present results showed that RTU traits can be very good predictors of Senegalese sole’s fillet volume, either used in regression models or as direct predictors.
id RCAP_01207d6777ca861ceb0701c9d16dd2c1
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/26733
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)Fillet volumeFillet yieldUltrasoundSolea senegalensisSenegalese sole (Solea senegalensis) has been considered a promising new flatfish species for Mediterranean marine fish farming. Accurate prediction of fillet traits in live animals may allow for more efficient control of muscle deposition in fish. In this sense, this study was undertaken to develop a non-invasive method to predict in vivo fish fillet volume and yield using real-time ultrasonography (RTU). The trial was conducted with 44 market weight Senegalese sole (298.54 ± 87.30 g). Fish were scanned with an Aloka SSD 500V with a 7.5 MHz probe. Ten RTU cross-sectional images were taken from the operculum to the caudal fin at regular intervals. These images were analyzed using Fiji software. These data were then used to estimate the partial volumes of the fillet. Actual fillet volume was determined using Archimedes’ principle. Simple and stepwise multiple regression analyses were then used to develop prediction models of fillet volume and yield. The most cranial RTU sections of the fish fillet were the best single predictors of both fillet volume and fillet yield and were the ones included in the best stepwise models. The best RTU slice area explained 82% of the variation observed in fillet volume, but the other RTU slice areas used as predictors of fillet volume showed poor to moderate accuracy (0.035 ≤ R2 ≤ 0.615). Single RTU partial volumes showed poor to very high accuracy (0.395 ≤ R2 ≤ 0.970) as predictors of fillet volume. The best stepwise model based on the RTU slice areas included three independent variables and explained 88.3% of the observed variation. The best stepwise models based on RTU partial volumes (single volumes and/or combinations of single volumes) explained about 97% of the variation observed in fillet volume. Two RTU volume traits, V1–5 + V6–9, and V1+()+9, showed to be practically direct predictors of the actual fillet volume, explaining, respectively, 97% and 96% of the variation observed in the actual fillet volume. The fillet yields show lower correlations with slice areas (r between 0.044 and 0.601) than with volumes (r between 0.288 and 0.637). While further studies are clearly necessary to better understand the potential of RTU for the estimation of fillet yield in fish in general and Senegalese sole in particular, the present results showed that RTU traits can be very good predictors of Senegalese sole’s fillet volume, either used in regression models or as direct predictors.This work was supported by European Food Safety Authority under grant OC/EFSA/SCER/2017/02; FCT pro- vided financial support by national funds (FCT/MCTES) to CFE (UIDB/04004/2020) and CIMO (UIDB/00690/2020); NC was financed by FCT under PhD grant SFRH/BD/133352/2017; YLD by DCE (Danish Centre for Environment and Energy) under grant 21628-82105.MDPIBiblioteca Digital do IPBAfonso, JoãoGuedes, Cristina M.Teixeira, AlfredoRema, PauloSilva, Severiano2023-02-03T12:16:59Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/26733engAfonso, João; Guedes, Cristina M.; Teixeira, Alfredo; Rema, Paulo; Silva, Severiano. (2022). In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis). Animals. ISSN 2076-2615. 12:18, p. 1-132076-2615info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:17:36Zoai:bibliotecadigital.ipb.pt:10198/26733Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:45:03.116291Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
title In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
spellingShingle In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
Afonso, João
Fillet volume
Fillet yield
Ultrasound
Solea senegalensis
title_short In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
title_full In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
title_fullStr In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
title_full_unstemmed In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
title_sort In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis)
author Afonso, João
author_facet Afonso, João
Guedes, Cristina M.
Teixeira, Alfredo
Rema, Paulo
Silva, Severiano
author_role author
author2 Guedes, Cristina M.
Teixeira, Alfredo
Rema, Paulo
Silva, Severiano
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Afonso, João
Guedes, Cristina M.
Teixeira, Alfredo
Rema, Paulo
Silva, Severiano
dc.subject.por.fl_str_mv Fillet volume
Fillet yield
Ultrasound
Solea senegalensis
topic Fillet volume
Fillet yield
Ultrasound
Solea senegalensis
description Senegalese sole (Solea senegalensis) has been considered a promising new flatfish species for Mediterranean marine fish farming. Accurate prediction of fillet traits in live animals may allow for more efficient control of muscle deposition in fish. In this sense, this study was undertaken to develop a non-invasive method to predict in vivo fish fillet volume and yield using real-time ultrasonography (RTU). The trial was conducted with 44 market weight Senegalese sole (298.54 ± 87.30 g). Fish were scanned with an Aloka SSD 500V with a 7.5 MHz probe. Ten RTU cross-sectional images were taken from the operculum to the caudal fin at regular intervals. These images were analyzed using Fiji software. These data were then used to estimate the partial volumes of the fillet. Actual fillet volume was determined using Archimedes’ principle. Simple and stepwise multiple regression analyses were then used to develop prediction models of fillet volume and yield. The most cranial RTU sections of the fish fillet were the best single predictors of both fillet volume and fillet yield and were the ones included in the best stepwise models. The best RTU slice area explained 82% of the variation observed in fillet volume, but the other RTU slice areas used as predictors of fillet volume showed poor to moderate accuracy (0.035 ≤ R2 ≤ 0.615). Single RTU partial volumes showed poor to very high accuracy (0.395 ≤ R2 ≤ 0.970) as predictors of fillet volume. The best stepwise model based on the RTU slice areas included three independent variables and explained 88.3% of the observed variation. The best stepwise models based on RTU partial volumes (single volumes and/or combinations of single volumes) explained about 97% of the variation observed in fillet volume. Two RTU volume traits, V1–5 + V6–9, and V1+()+9, showed to be practically direct predictors of the actual fillet volume, explaining, respectively, 97% and 96% of the variation observed in the actual fillet volume. The fillet yields show lower correlations with slice areas (r between 0.044 and 0.601) than with volumes (r between 0.288 and 0.637). While further studies are clearly necessary to better understand the potential of RTU for the estimation of fillet yield in fish in general and Senegalese sole in particular, the present results showed that RTU traits can be very good predictors of Senegalese sole’s fillet volume, either used in regression models or as direct predictors.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-02-03T12:16:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/26733
url http://hdl.handle.net/10198/26733
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Afonso, João; Guedes, Cristina M.; Teixeira, Alfredo; Rema, Paulo; Silva, Severiano. (2022). In vivo ultrasound prediction of the fillet volume in senegalese sole (Solea senegalensis). Animals. ISSN 2076-2615. 12:18, p. 1-13
2076-2615
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592207580332032