Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells

Bibliographic Details
Main Author: Natoli, Alejandro
Publication Date: 2019
Other Authors: Yaremchenko, Aleksey, Frade, Jorge
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/26442
Summary: Long-term degradation remains the main issue for the viability of reversible solid oxide fuel/electrolysis cell (SOFC/SOEC) technology as practical hydrogen production and energy storage systems. While some lifetime-limiting factors are common in both regimes, the major specific degradation mechanism in SOEC regime relates to the delamination phenomena. The experimental and modelling results suggest that high oxygen pressures can develop in electrolyte near the anode/electrolyte interface resulting in formation of voids at the grain boundaries, intergranular fractures, cracks in anode, and anode delamination; all factors contribute to irreversible degradation. The objective of this work was the characterization of ZrO2-Y2O3-MnO2 solid solution in order to design a functional material with oxygen storage ability that may be used as inclusion into electrolyte membrane or as interlayer between electrolyte and oxygen electrode with the purpose of delay or prevent degradation and irreversible changes. ((ZrO2)1-x(Y2O3)x)1-y(MnOn)y ceramics (x = 0.02-0.05, y = 0.05-0.15) were prepared by solid-state reaction route and sintered in air at 1400-1600°C. XRD results showed the formation of singlephase solid solutions with cubic fluorite-type structure for the compositions with x = 0.05, while the ceramics with lower yttria content comprised 2 or more phases based on different polymorphs of zirconia. The characterization of materials included microstructural studies (SEM/EDS), thermal analysis (thermogravimetry, dilatometry), measurements of electrical conductivity as function of temperature and oxygen partial pressure, and determination of ionic transference numbers by modified e.m.f. method. Increasing Mn content was found to results in increase of the total electrical conductivity and electronic contribution under oxidizing conditions, while ionic transport dominates under reduced oxygen partial pressures. Electrical measurements showed also a slow relaxation of electrical conductivity on redox cycling that possibly can be attributed to a variable solubility of Mn cations in fluorite lattice.
id RCAP_00e8dd003dfbda5e35bf1e5c24d2b5de
oai_identifier_str oai:ria.ua.pt:10773/26442
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cellsFluoriteZirconiaSolid electrolyteSolid oxide cellLong-term degradation remains the main issue for the viability of reversible solid oxide fuel/electrolysis cell (SOFC/SOEC) technology as practical hydrogen production and energy storage systems. While some lifetime-limiting factors are common in both regimes, the major specific degradation mechanism in SOEC regime relates to the delamination phenomena. The experimental and modelling results suggest that high oxygen pressures can develop in electrolyte near the anode/electrolyte interface resulting in formation of voids at the grain boundaries, intergranular fractures, cracks in anode, and anode delamination; all factors contribute to irreversible degradation. The objective of this work was the characterization of ZrO2-Y2O3-MnO2 solid solution in order to design a functional material with oxygen storage ability that may be used as inclusion into electrolyte membrane or as interlayer between electrolyte and oxygen electrode with the purpose of delay or prevent degradation and irreversible changes. ((ZrO2)1-x(Y2O3)x)1-y(MnOn)y ceramics (x = 0.02-0.05, y = 0.05-0.15) were prepared by solid-state reaction route and sintered in air at 1400-1600°C. XRD results showed the formation of singlephase solid solutions with cubic fluorite-type structure for the compositions with x = 0.05, while the ceramics with lower yttria content comprised 2 or more phases based on different polymorphs of zirconia. The characterization of materials included microstructural studies (SEM/EDS), thermal analysis (thermogravimetry, dilatometry), measurements of electrical conductivity as function of temperature and oxygen partial pressure, and determination of ionic transference numbers by modified e.m.f. method. Increasing Mn content was found to results in increase of the total electrical conductivity and electronic contribution under oxidizing conditions, while ionic transport dominates under reduced oxygen partial pressures. Electrical measurements showed also a slow relaxation of electrical conductivity on redox cycling that possibly can be attributed to a variable solubility of Mn cations in fluorite lattice.2019-08-27T16:12:46Z2019-06-01T00:00:00Z2019-06conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/26442engNatoli, AlejandroYaremchenko, AlekseyFrade, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:21:15Zoai:ria.ua.pt:10773/26442Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:05:33.761475Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
title Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
spellingShingle Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
Natoli, Alejandro
Fluorite
Zirconia
Solid electrolyte
Solid oxide cell
title_short Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
title_full Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
title_fullStr Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
title_full_unstemmed Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
title_sort Characterization of ZrO2-Y2O3-MnO2 solid solutions as components for reversible solid oxide cells
author Natoli, Alejandro
author_facet Natoli, Alejandro
Yaremchenko, Aleksey
Frade, Jorge
author_role author
author2 Yaremchenko, Aleksey
Frade, Jorge
author2_role author
author
dc.contributor.author.fl_str_mv Natoli, Alejandro
Yaremchenko, Aleksey
Frade, Jorge
dc.subject.por.fl_str_mv Fluorite
Zirconia
Solid electrolyte
Solid oxide cell
topic Fluorite
Zirconia
Solid electrolyte
Solid oxide cell
description Long-term degradation remains the main issue for the viability of reversible solid oxide fuel/electrolysis cell (SOFC/SOEC) technology as practical hydrogen production and energy storage systems. While some lifetime-limiting factors are common in both regimes, the major specific degradation mechanism in SOEC regime relates to the delamination phenomena. The experimental and modelling results suggest that high oxygen pressures can develop in electrolyte near the anode/electrolyte interface resulting in formation of voids at the grain boundaries, intergranular fractures, cracks in anode, and anode delamination; all factors contribute to irreversible degradation. The objective of this work was the characterization of ZrO2-Y2O3-MnO2 solid solution in order to design a functional material with oxygen storage ability that may be used as inclusion into electrolyte membrane or as interlayer between electrolyte and oxygen electrode with the purpose of delay or prevent degradation and irreversible changes. ((ZrO2)1-x(Y2O3)x)1-y(MnOn)y ceramics (x = 0.02-0.05, y = 0.05-0.15) were prepared by solid-state reaction route and sintered in air at 1400-1600°C. XRD results showed the formation of singlephase solid solutions with cubic fluorite-type structure for the compositions with x = 0.05, while the ceramics with lower yttria content comprised 2 or more phases based on different polymorphs of zirconia. The characterization of materials included microstructural studies (SEM/EDS), thermal analysis (thermogravimetry, dilatometry), measurements of electrical conductivity as function of temperature and oxygen partial pressure, and determination of ionic transference numbers by modified e.m.f. method. Increasing Mn content was found to results in increase of the total electrical conductivity and electronic contribution under oxidizing conditions, while ionic transport dominates under reduced oxygen partial pressures. Electrical measurements showed also a slow relaxation of electrical conductivity on redox cycling that possibly can be attributed to a variable solubility of Mn cations in fluorite lattice.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-27T16:12:46Z
2019-06-01T00:00:00Z
2019-06
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/26442
url http://hdl.handle.net/10773/26442
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594283759763456