Export Ready — 

Computational methodologies in the exploration of marine natural product leads

Bibliographic Details
Main Author: Pereira, Florbela
Publication Date: 2018
Other Authors: Aires-de-Sousa, João
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/109136
Summary: Grant: SFRH/BPD/108237/2015. POCI-01-0145-FEDER-007265.
id RCAP_0021724abc9625dde39b996618fb8a21
oai_identifier_str oai:run.unl.pt:10362/109136
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Computational methodologies in the exploration of marine natural product leadsBioinformaticsChemoinformaticsComputer-aided drug design (CADD)Drug discoveryMachine learning (ML)Marine natural products (MNPs)Drug DiscoverySDG 14 - Life Below WaterGrant: SFRH/BPD/108237/2015. POCI-01-0145-FEDER-007265.Computational methodologies are assisting the exploration of marine natural products (MNPs) to make the discovery of new leads more efficient, to repurpose known MNPs, to target new metabolites on the basis of genome analysis, to reveal mechanisms of action, and to optimize leads. In silico efforts in drug discovery of NPs have mainly focused on two tasks: dereplication and prediction of bioactivities. The exploration of new chemical spaces and the application of predicted spectral data must be included in new approaches to select species, extracts, and growth conditions with maximum probabilities of medicinal chemistry novelty. In this review, the most relevant current computational dereplication methodologies are highlighted. Structure-based (SB) and ligand-based (LB) chemoinformatics approaches have become essential tools for the virtual screening of NPs either in small datasets of isolated compounds or in large-scale databases. The most common LB techniques include Quantitative Structure–Activity Relationships (QSAR), estimation of drug likeness, prediction of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, similarity searching, and pharmacophore identification. Analogously, molecular dynamics, docking and binding cavity analysis have been used in SB approaches. Their significance and achievements are the main focus of this review.LAQV@REQUIMTEDQ - Departamento de QuímicaRUNPereira, FlorbelaAires-de-Sousa, João2020-12-22T00:23:01Z2018-07-132018-07-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherapplication/pdfhttp://hdl.handle.net/10362/109136engPURE: 5785197https://doi.org/10.3390/md16070236info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:49:31Zoai:run.unl.pt:10362/109136Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:20:52.262423Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Computational methodologies in the exploration of marine natural product leads
title Computational methodologies in the exploration of marine natural product leads
spellingShingle Computational methodologies in the exploration of marine natural product leads
Pereira, Florbela
Bioinformatics
Chemoinformatics
Computer-aided drug design (CADD)
Drug discovery
Machine learning (ML)
Marine natural products (MNPs)
Drug Discovery
SDG 14 - Life Below Water
title_short Computational methodologies in the exploration of marine natural product leads
title_full Computational methodologies in the exploration of marine natural product leads
title_fullStr Computational methodologies in the exploration of marine natural product leads
title_full_unstemmed Computational methodologies in the exploration of marine natural product leads
title_sort Computational methodologies in the exploration of marine natural product leads
author Pereira, Florbela
author_facet Pereira, Florbela
Aires-de-Sousa, João
author_role author
author2 Aires-de-Sousa, João
author2_role author
dc.contributor.none.fl_str_mv LAQV@REQUIMTE
DQ - Departamento de Química
RUN
dc.contributor.author.fl_str_mv Pereira, Florbela
Aires-de-Sousa, João
dc.subject.por.fl_str_mv Bioinformatics
Chemoinformatics
Computer-aided drug design (CADD)
Drug discovery
Machine learning (ML)
Marine natural products (MNPs)
Drug Discovery
SDG 14 - Life Below Water
topic Bioinformatics
Chemoinformatics
Computer-aided drug design (CADD)
Drug discovery
Machine learning (ML)
Marine natural products (MNPs)
Drug Discovery
SDG 14 - Life Below Water
description Grant: SFRH/BPD/108237/2015. POCI-01-0145-FEDER-007265.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-13
2018-07-13T00:00:00Z
2020-12-22T00:23:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/109136
url http://hdl.handle.net/10362/109136
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv PURE: 5785197
https://doi.org/10.3390/md16070236
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596628005552128