Applying machine learning to electronic health records : a study on two adverse events

Bibliographic Details
Main Author: Santos, Henrique Dias Pereira dos
Publication Date: 2021
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da PUC_RS
Download full: http://tede2.pucrs.br/tede2/handle/tede/9643
Summary: In the hospital environment, the incidence of adverse events (AE) (unforeseen incidents that cause harm to patients) is the primary concern of risk management teams. The use of machine learning techniques could help healthcare professional to identify and mitigate adverse events.This thesis develops experiments to evaluate machine learning approaches to identify two major adverse events in electronic health records (EHR). The first algorithm was created to identify fall events in clinical notes using language models and neural networks. We annotated 1,402 clinical sentences with fall events to train a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly identify 85% of the sentences with fall events. For medication review, we built an unsupervised algorithm based on graph structure to rank outlier prescriptions. In our experiments, the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed medications as underdoses and overdoses. Finally, to better understand the performance of our approach in a real-world scenario, we deployed a decision support system for clinical pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized datasets are publicly available on the GitHub page of our research group.
id P_RS_dc7d30fa11e5bc3ad52acf588cc1375f
oai_identifier_str oai:tede2.pucrs.br:tede/9643
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Applying machine learning to electronic health records : a study on two adverse eventsAplicando aprendizado de máquina à prontuários eletrônicos do paciente : um estudo em dois eventos adversosElectronic Health RecordsAdverse EventsMachine LearningSupervised LearningUnsupervised LearningProntuário Eletrônico do PacienteEventos AdversosAprendizado de MáquinaAprendizado SupervisionadoAprendizado Não-SupervisionadoCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOIn the hospital environment, the incidence of adverse events (AE) (unforeseen incidents that cause harm to patients) is the primary concern of risk management teams. The use of machine learning techniques could help healthcare professional to identify and mitigate adverse events.This thesis develops experiments to evaluate machine learning approaches to identify two major adverse events in electronic health records (EHR). The first algorithm was created to identify fall events in clinical notes using language models and neural networks. We annotated 1,402 clinical sentences with fall events to train a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly identify 85% of the sentences with fall events. For medication review, we built an unsupervised algorithm based on graph structure to rank outlier prescriptions. In our experiments, the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed medications as underdoses and overdoses. Finally, to better understand the performance of our approach in a real-world scenario, we deployed a decision support system for clinical pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized datasets are publicly available on the GitHub page of our research group.No ambiente hospitalar, a incidência de eventos adversos (EA) (incidentes imprevistos que causam danos aos pacientes) é a principal preocupação das equipes de gerenciamento de risco. Esta tese desenvolve experimentos para avaliar abordagens de aprendizado de máquina para identificar dois grandes eventos adversos em prontruários eletrônicos do paciente (PEP). O primeiro algoritmo foi criado para identificar eventos de queda em evoluções clínicas usando modelos de linguagem e redes neurais. Anotamos 1.402 sentenças em evoluções clínicas com eventos de queda para treinar um Classificador de Token (TkC) para detectar palavras dentro do contexto de quedas. O TkC foi capaz de identificar corretamente 85% das sentenças com eventos de queda. Para a avaliação de prescrições, construímos um algoritmo não-supervisionado com base em estrutura de grafos para classificar as prescrições fora-do-padrão. Em nossos experimentos, o algoritmo proposto, o DDC-Outlier, classificou corretamente 68% (Medida-F) dos medicamentos prescritos como subdoses e overdoses. Finalmente, para entender melhor o desempenho de nossa abordagem em um cenário do mundo real, implantamos um sistema de suporte à decisão para farmácia clínica em um hospital de 1.200 leitos. Todos os experimentos, códigos-fonte e conjuntos de dados anônimos estão disponíveis publicamente na página GitHub de nosso grupo de pesquisa.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESPontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoVieira, RenataSantos, Henrique Dias Pereira dos2021-05-20T16:36:54Z2021-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/9643enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2021-05-20T23:00:17Zoai:tede2.pucrs.br:tede/9643Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2021-05-20T23:00:17Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Applying machine learning to electronic health records : a study on two adverse events
Aplicando aprendizado de máquina à prontuários eletrônicos do paciente : um estudo em dois eventos adversos
title Applying machine learning to electronic health records : a study on two adverse events
spellingShingle Applying machine learning to electronic health records : a study on two adverse events
Santos, Henrique Dias Pereira dos
Electronic Health Records
Adverse Events
Machine Learning
Supervised Learning
Unsupervised Learning
Prontuário Eletrônico do Paciente
Eventos Adversos
Aprendizado de Máquina
Aprendizado Supervisionado
Aprendizado Não-Supervisionado
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Applying machine learning to electronic health records : a study on two adverse events
title_full Applying machine learning to electronic health records : a study on two adverse events
title_fullStr Applying machine learning to electronic health records : a study on two adverse events
title_full_unstemmed Applying machine learning to electronic health records : a study on two adverse events
title_sort Applying machine learning to electronic health records : a study on two adverse events
author Santos, Henrique Dias Pereira dos
author_facet Santos, Henrique Dias Pereira dos
author_role author
dc.contributor.none.fl_str_mv Vieira, Renata
dc.contributor.author.fl_str_mv Santos, Henrique Dias Pereira dos
dc.subject.por.fl_str_mv Electronic Health Records
Adverse Events
Machine Learning
Supervised Learning
Unsupervised Learning
Prontuário Eletrônico do Paciente
Eventos Adversos
Aprendizado de Máquina
Aprendizado Supervisionado
Aprendizado Não-Supervisionado
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Electronic Health Records
Adverse Events
Machine Learning
Supervised Learning
Unsupervised Learning
Prontuário Eletrônico do Paciente
Eventos Adversos
Aprendizado de Máquina
Aprendizado Supervisionado
Aprendizado Não-Supervisionado
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description In the hospital environment, the incidence of adverse events (AE) (unforeseen incidents that cause harm to patients) is the primary concern of risk management teams. The use of machine learning techniques could help healthcare professional to identify and mitigate adverse events.This thesis develops experiments to evaluate machine learning approaches to identify two major adverse events in electronic health records (EHR). The first algorithm was created to identify fall events in clinical notes using language models and neural networks. We annotated 1,402 clinical sentences with fall events to train a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly identify 85% of the sentences with fall events. For medication review, we built an unsupervised algorithm based on graph structure to rank outlier prescriptions. In our experiments, the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed medications as underdoses and overdoses. Finally, to better understand the performance of our approach in a real-world scenario, we deployed a decision support system for clinical pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized datasets are publicly available on the GitHub page of our research group.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-20T16:36:54Z
2021-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/9643
url http://tede2.pucrs.br/tede2/handle/tede/9643
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041111594139648