Applying machine learning to electronic health records : a study on two adverse events
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Format: | Doctoral thesis |
| Language: | eng |
| Source: | Biblioteca Digital de Teses e Dissertações da PUC_RS |
| Download full: | http://tede2.pucrs.br/tede2/handle/tede/9643 |
Summary: | In the hospital environment, the incidence of adverse events (AE) (unforeseen incidents that cause harm to patients) is the primary concern of risk management teams. The use of machine learning techniques could help healthcare professional to identify and mitigate adverse events.This thesis develops experiments to evaluate machine learning approaches to identify two major adverse events in electronic health records (EHR). The first algorithm was created to identify fall events in clinical notes using language models and neural networks. We annotated 1,402 clinical sentences with fall events to train a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly identify 85% of the sentences with fall events. For medication review, we built an unsupervised algorithm based on graph structure to rank outlier prescriptions. In our experiments, the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed medications as underdoses and overdoses. Finally, to better understand the performance of our approach in a real-world scenario, we deployed a decision support system for clinical pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized datasets are publicly available on the GitHub page of our research group. |
| id |
P_RS_dc7d30fa11e5bc3ad52acf588cc1375f |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/9643 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Applying machine learning to electronic health records : a study on two adverse eventsAplicando aprendizado de máquina à prontuários eletrônicos do paciente : um estudo em dois eventos adversosElectronic Health RecordsAdverse EventsMachine LearningSupervised LearningUnsupervised LearningProntuário Eletrônico do PacienteEventos AdversosAprendizado de MáquinaAprendizado SupervisionadoAprendizado Não-SupervisionadoCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOIn the hospital environment, the incidence of adverse events (AE) (unforeseen incidents that cause harm to patients) is the primary concern of risk management teams. The use of machine learning techniques could help healthcare professional to identify and mitigate adverse events.This thesis develops experiments to evaluate machine learning approaches to identify two major adverse events in electronic health records (EHR). The first algorithm was created to identify fall events in clinical notes using language models and neural networks. We annotated 1,402 clinical sentences with fall events to train a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly identify 85% of the sentences with fall events. For medication review, we built an unsupervised algorithm based on graph structure to rank outlier prescriptions. In our experiments, the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed medications as underdoses and overdoses. Finally, to better understand the performance of our approach in a real-world scenario, we deployed a decision support system for clinical pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized datasets are publicly available on the GitHub page of our research group.No ambiente hospitalar, a incidência de eventos adversos (EA) (incidentes imprevistos que causam danos aos pacientes) é a principal preocupação das equipes de gerenciamento de risco. Esta tese desenvolve experimentos para avaliar abordagens de aprendizado de máquina para identificar dois grandes eventos adversos em prontruários eletrônicos do paciente (PEP). O primeiro algoritmo foi criado para identificar eventos de queda em evoluções clínicas usando modelos de linguagem e redes neurais. Anotamos 1.402 sentenças em evoluções clínicas com eventos de queda para treinar um Classificador de Token (TkC) para detectar palavras dentro do contexto de quedas. O TkC foi capaz de identificar corretamente 85% das sentenças com eventos de queda. Para a avaliação de prescrições, construímos um algoritmo não-supervisionado com base em estrutura de grafos para classificar as prescrições fora-do-padrão. Em nossos experimentos, o algoritmo proposto, o DDC-Outlier, classificou corretamente 68% (Medida-F) dos medicamentos prescritos como subdoses e overdoses. Finalmente, para entender melhor o desempenho de nossa abordagem em um cenário do mundo real, implantamos um sistema de suporte à decisão para farmácia clínica em um hospital de 1.200 leitos. Todos os experimentos, códigos-fonte e conjuntos de dados anônimos estão disponíveis publicamente na página GitHub de nosso grupo de pesquisa.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESPontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoVieira, RenataSantos, Henrique Dias Pereira dos2021-05-20T16:36:54Z2021-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/9643enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2021-05-20T23:00:17Zoai:tede2.pucrs.br:tede/9643Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2021-05-20T23:00:17Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Applying machine learning to electronic health records : a study on two adverse events Aplicando aprendizado de máquina à prontuários eletrônicos do paciente : um estudo em dois eventos adversos |
| title |
Applying machine learning to electronic health records : a study on two adverse events |
| spellingShingle |
Applying machine learning to electronic health records : a study on two adverse events Santos, Henrique Dias Pereira dos Electronic Health Records Adverse Events Machine Learning Supervised Learning Unsupervised Learning Prontuário Eletrônico do Paciente Eventos Adversos Aprendizado de Máquina Aprendizado Supervisionado Aprendizado Não-Supervisionado CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Applying machine learning to electronic health records : a study on two adverse events |
| title_full |
Applying machine learning to electronic health records : a study on two adverse events |
| title_fullStr |
Applying machine learning to electronic health records : a study on two adverse events |
| title_full_unstemmed |
Applying machine learning to electronic health records : a study on two adverse events |
| title_sort |
Applying machine learning to electronic health records : a study on two adverse events |
| author |
Santos, Henrique Dias Pereira dos |
| author_facet |
Santos, Henrique Dias Pereira dos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Vieira, Renata |
| dc.contributor.author.fl_str_mv |
Santos, Henrique Dias Pereira dos |
| dc.subject.por.fl_str_mv |
Electronic Health Records Adverse Events Machine Learning Supervised Learning Unsupervised Learning Prontuário Eletrônico do Paciente Eventos Adversos Aprendizado de Máquina Aprendizado Supervisionado Aprendizado Não-Supervisionado CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Electronic Health Records Adverse Events Machine Learning Supervised Learning Unsupervised Learning Prontuário Eletrônico do Paciente Eventos Adversos Aprendizado de Máquina Aprendizado Supervisionado Aprendizado Não-Supervisionado CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
In the hospital environment, the incidence of adverse events (AE) (unforeseen incidents that cause harm to patients) is the primary concern of risk management teams. The use of machine learning techniques could help healthcare professional to identify and mitigate adverse events.This thesis develops experiments to evaluate machine learning approaches to identify two major adverse events in electronic health records (EHR). The first algorithm was created to identify fall events in clinical notes using language models and neural networks. We annotated 1,402 clinical sentences with fall events to train a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly identify 85% of the sentences with fall events. For medication review, we built an unsupervised algorithm based on graph structure to rank outlier prescriptions. In our experiments, the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed medications as underdoses and overdoses. Finally, to better understand the performance of our approach in a real-world scenario, we deployed a decision support system for clinical pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized datasets are publicly available on the GitHub page of our research group. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-05-20T16:36:54Z 2021-03-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/9643 |
| url |
http://tede2.pucrs.br/tede2/handle/tede/9643 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041111594139648 |