Export Ready — 

[pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS

Bibliographic Details
Main Author: RUDY MASSAMI SAKAMOTO KAWABATA
Publication Date: 2016
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Download full: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=2
http://doi.org/10.17771/PUCRio.acad.25898
Summary: [pt] As premências da sociedade contemporânea têm dependido gradativamente mais do uso de dispositivos optoeletrônicos como solução para o aperfeiçoamento de inúmeras aplicações diárias. Notadamente na última década, áreas como a de geração de energia elétrica com células solares inorgânicas ou a de computação com o advento de computadores quânticos baseados em fótons únicos têm acumulado muitos investimentos em pesquisa. Este trabalho visa estudar e definir os parâmetros necessários para a produção de pontos quânticos (QD, do inglês Quantum Dot) de semicondutores III-V com o objetivo de aplicá-los como material ativo para células solares de banda intermediária (IBSC, do inglês Intermediate Band Solar Cell) e para emissores de fótons únicos quando inseridos em nanofios (QD-in-NW, do inglês QD in Nanowire). Para a aplicação em IBSC, os pontos quânticos são produzidos auto organizadamente pelo modo Stranski-Krastanow. A estrutura de banda do IBSC requer um poço de potencial fundo o suficiente para gerar 3 absorções em paralelo de fótons com energias distintas (um proveniente da energia de gap do material da barreira, um da absorção banda-banda do poço de potencial e o terceiro da absorção intra-banda do poço na banda de condução). Os materiais escolhidos foram barreiras de AlxGa1-xAs e poço de InAs crescidos sobre um substrato de GaAs(100). Os resultados do crescimento dessa estrutura foram analisados por microscopia de força atômica (AFM, do inglês atomic force microscopy), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET) e fotoluminescência (PL, do inglês photoluminescence). Para a aplicação em emissores de fótons únicos, os QDs (de InxGa1-xAs) são crescidos axialmente sobre nanofios de GaAs em substrato de GaAs(111)B. A técnica de crescimento escolhida neste caso foi o crescimento seletivo (SAG, do inglês selective area growth) que traz muitas vantagens com relação à qualidade cristalina e futuras litografias para fabricação do dispositivo. Tal técnica consiste na aplicação de uma máscara sobre o substrato com buracos nanométricos dentro dos quais a epitaxia ocorre exclusivamente. Os resultados de crescimento da estrutura foram analisados por MEV, MET, PL e espectroscopia de raios X por dispersão em energia (EDX, do inglês Energy-dispersive X-ray Spectroscopy). Em ambos os casos, o crescimento das estruturas finais foi otimizado. Foi possível obter correlações da influência de cada parâmetro de crescimento na morfologia, cristalinidade e composição das estruturas. No caso dos QDs para IBSC, o método usado de recobrimento por In-flush foi determinante para a melhoria da qualidade cristalina das camadas e da homogeneização da altura dos QDs. No caso da estrutura de QD-in-NW, primeiro precisou-se encontrar os parâmetros de crescimento dos nanofios para atingir uma razão de aspecto alta, e só posteriormente estudou-se as condições para que o InAs crescesse axialmente sobre o nanofio. As caracterizações, principalmente a ótica, de ambos os trabalhos indicam que as estruturas propostas foram produzidas.
id PUC_RIO-1_356e3765ea81e9a55eb8d923a20c00b6
oai_identifier_str oai:MAXWELL.puc-rio.br:25898
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS [en] GROWTH OF QUANTUM DOTS BY STRANSKI-KRASTANOV MODE AND BY SELECTIVE AREA GROWTH IN NANOWIRE FOR OPTOELECTRONIC DEVICES [pt] PONTOS QUANTICOS[pt] SEMICONDUTORES III-V[pt] MOVPE[pt] FIOS QUANTICOS[en] QUANTUM DOTS[en] III-V SEMICONDUTORES[en] MOVE[en] QUANTUM WIRE[pt] As premências da sociedade contemporânea têm dependido gradativamente mais do uso de dispositivos optoeletrônicos como solução para o aperfeiçoamento de inúmeras aplicações diárias. Notadamente na última década, áreas como a de geração de energia elétrica com células solares inorgânicas ou a de computação com o advento de computadores quânticos baseados em fótons únicos têm acumulado muitos investimentos em pesquisa. Este trabalho visa estudar e definir os parâmetros necessários para a produção de pontos quânticos (QD, do inglês Quantum Dot) de semicondutores III-V com o objetivo de aplicá-los como material ativo para células solares de banda intermediária (IBSC, do inglês Intermediate Band Solar Cell) e para emissores de fótons únicos quando inseridos em nanofios (QD-in-NW, do inglês QD in Nanowire). Para a aplicação em IBSC, os pontos quânticos são produzidos auto organizadamente pelo modo Stranski-Krastanow. A estrutura de banda do IBSC requer um poço de potencial fundo o suficiente para gerar 3 absorções em paralelo de fótons com energias distintas (um proveniente da energia de gap do material da barreira, um da absorção banda-banda do poço de potencial e o terceiro da absorção intra-banda do poço na banda de condução). Os materiais escolhidos foram barreiras de AlxGa1-xAs e poço de InAs crescidos sobre um substrato de GaAs(100). Os resultados do crescimento dessa estrutura foram analisados por microscopia de força atômica (AFM, do inglês atomic force microscopy), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET) e fotoluminescência (PL, do inglês photoluminescence). Para a aplicação em emissores de fótons únicos, os QDs (de InxGa1-xAs) são crescidos axialmente sobre nanofios de GaAs em substrato de GaAs(111)B. A técnica de crescimento escolhida neste caso foi o crescimento seletivo (SAG, do inglês selective area growth) que traz muitas vantagens com relação à qualidade cristalina e futuras litografias para fabricação do dispositivo. Tal técnica consiste na aplicação de uma máscara sobre o substrato com buracos nanométricos dentro dos quais a epitaxia ocorre exclusivamente. Os resultados de crescimento da estrutura foram analisados por MEV, MET, PL e espectroscopia de raios X por dispersão em energia (EDX, do inglês Energy-dispersive X-ray Spectroscopy). Em ambos os casos, o crescimento das estruturas finais foi otimizado. Foi possível obter correlações da influência de cada parâmetro de crescimento na morfologia, cristalinidade e composição das estruturas. No caso dos QDs para IBSC, o método usado de recobrimento por In-flush foi determinante para a melhoria da qualidade cristalina das camadas e da homogeneização da altura dos QDs. No caso da estrutura de QD-in-NW, primeiro precisou-se encontrar os parâmetros de crescimento dos nanofios para atingir uma razão de aspecto alta, e só posteriormente estudou-se as condições para que o InAs crescesse axialmente sobre o nanofio. As caracterizações, principalmente a ótica, de ambos os trabalhos indicam que as estruturas propostas foram produzidas.[en] In contemporary society the dependence on optoelectronic devices for countless daily applications has increased gradually. Particularly in the last decade fields such as energy generation through inorganic solar cells or quantum computation based in exchange of single photons has been heavily funded for their development. The aim of this thesis is defining the production parameters needed to fabricate quantum dots (QD) based on III-V semiconductors with planar geometry for intermediate band solar cell (IBSC) and with nanowire geometry (quantum dot in nanowire, QD-in-NW) for single photon emitter applications. For IBSC, the QDs are generated via self-assembly by Stranski-Krastanow mode. The IBSC s band structure requires a potential well deep enough to have 3 parallel photon absorption in different energy ranges (one is the barrier s energy gap, another is from the valence band to the intermediate band and the third one is from the intermediate band to the top of the barrier). The selected materials were AlxGa1-xAs as barriers, InAs as well, all grown on GaAs(100) substrate. The growth results were analysed by atomic force microscopy (AFM), scanning eléctron microscopy (SEM), transmission eléctron microscopy (TEM) and photoluminescence (PL). For the single photon emitters, the QDs (InxGa1-xAs) are grown axially over GaAs nanowires on a GaAs(111)B substrate. The chosen growth technique was the selective area growth (SAG) that brings many advantages in crystal quality and device lithography. This technique consists of applying a mask over the substrate with nanometric holes inside which the epitaxy occurs. The results were analysed by SEM, TEM, PL and energy dispersive X-ray spectroscopy (EDX). In both cases, the growth of the structures were optimized for better quality. The growth parameters could be correlated with the structure’s morfology, cristalinity and composition. For the IBSC, a capping method named In-flush was used to increase the crystal quality from the layers and the homogeneity from the QD s heights. For the QD-in-NW, firstly the nanowire s growth was optimized for higher aspect ratio and only then the growth of the InAs QD was optimized for axial growth over the nanowire. In both cases the optical measurements show that the proposed structures were grown successfully.MAXWELLPATRICIA LUSTOZA DE SOUZAPATRICIA LUSTOZA DE SOUZARUDY MASSAMI SAKAMOTO KAWABATA2016-03-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=2http://doi.org/10.17771/PUCRio.acad.25898porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-06-24T00:00:00Zoai:MAXWELL.puc-rio.br:25898Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-06-24T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
[en] GROWTH OF QUANTUM DOTS BY STRANSKI-KRASTANOV MODE AND BY SELECTIVE AREA GROWTH IN NANOWIRE FOR OPTOELECTRONIC DEVICES
title [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
spellingShingle [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
RUDY MASSAMI SAKAMOTO KAWABATA
[pt] PONTOS QUANTICOS
[pt] SEMICONDUTORES III-V
[pt] MOVPE
[pt] FIOS QUANTICOS
[en] QUANTUM DOTS
[en] III-V SEMICONDUTORES
[en] MOVE
[en] QUANTUM WIRE
title_short [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
title_full [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
title_fullStr [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
title_full_unstemmed [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
title_sort [pt] CRESCIMENTO DE PONTOS QUÂNTICOS POR STRANSKI-KRASTANOV E POR CRESCIMENTO SELETIVO EM NANOFIOS VISANDO APLICAÇÃO EM DISPOSITIVOS OPTOELETRÔNICOS
author RUDY MASSAMI SAKAMOTO KAWABATA
author_facet RUDY MASSAMI SAKAMOTO KAWABATA
author_role author
dc.contributor.none.fl_str_mv PATRICIA LUSTOZA DE SOUZA
PATRICIA LUSTOZA DE SOUZA
dc.contributor.author.fl_str_mv RUDY MASSAMI SAKAMOTO KAWABATA
dc.subject.por.fl_str_mv [pt] PONTOS QUANTICOS
[pt] SEMICONDUTORES III-V
[pt] MOVPE
[pt] FIOS QUANTICOS
[en] QUANTUM DOTS
[en] III-V SEMICONDUTORES
[en] MOVE
[en] QUANTUM WIRE
topic [pt] PONTOS QUANTICOS
[pt] SEMICONDUTORES III-V
[pt] MOVPE
[pt] FIOS QUANTICOS
[en] QUANTUM DOTS
[en] III-V SEMICONDUTORES
[en] MOVE
[en] QUANTUM WIRE
description [pt] As premências da sociedade contemporânea têm dependido gradativamente mais do uso de dispositivos optoeletrônicos como solução para o aperfeiçoamento de inúmeras aplicações diárias. Notadamente na última década, áreas como a de geração de energia elétrica com células solares inorgânicas ou a de computação com o advento de computadores quânticos baseados em fótons únicos têm acumulado muitos investimentos em pesquisa. Este trabalho visa estudar e definir os parâmetros necessários para a produção de pontos quânticos (QD, do inglês Quantum Dot) de semicondutores III-V com o objetivo de aplicá-los como material ativo para células solares de banda intermediária (IBSC, do inglês Intermediate Band Solar Cell) e para emissores de fótons únicos quando inseridos em nanofios (QD-in-NW, do inglês QD in Nanowire). Para a aplicação em IBSC, os pontos quânticos são produzidos auto organizadamente pelo modo Stranski-Krastanow. A estrutura de banda do IBSC requer um poço de potencial fundo o suficiente para gerar 3 absorções em paralelo de fótons com energias distintas (um proveniente da energia de gap do material da barreira, um da absorção banda-banda do poço de potencial e o terceiro da absorção intra-banda do poço na banda de condução). Os materiais escolhidos foram barreiras de AlxGa1-xAs e poço de InAs crescidos sobre um substrato de GaAs(100). Os resultados do crescimento dessa estrutura foram analisados por microscopia de força atômica (AFM, do inglês atomic force microscopy), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET) e fotoluminescência (PL, do inglês photoluminescence). Para a aplicação em emissores de fótons únicos, os QDs (de InxGa1-xAs) são crescidos axialmente sobre nanofios de GaAs em substrato de GaAs(111)B. A técnica de crescimento escolhida neste caso foi o crescimento seletivo (SAG, do inglês selective area growth) que traz muitas vantagens com relação à qualidade cristalina e futuras litografias para fabricação do dispositivo. Tal técnica consiste na aplicação de uma máscara sobre o substrato com buracos nanométricos dentro dos quais a epitaxia ocorre exclusivamente. Os resultados de crescimento da estrutura foram analisados por MEV, MET, PL e espectroscopia de raios X por dispersão em energia (EDX, do inglês Energy-dispersive X-ray Spectroscopy). Em ambos os casos, o crescimento das estruturas finais foi otimizado. Foi possível obter correlações da influência de cada parâmetro de crescimento na morfologia, cristalinidade e composição das estruturas. No caso dos QDs para IBSC, o método usado de recobrimento por In-flush foi determinante para a melhoria da qualidade cristalina das camadas e da homogeneização da altura dos QDs. No caso da estrutura de QD-in-NW, primeiro precisou-se encontrar os parâmetros de crescimento dos nanofios para atingir uma razão de aspecto alta, e só posteriormente estudou-se as condições para que o InAs crescesse axialmente sobre o nanofio. As caracterizações, principalmente a ótica, de ambos os trabalhos indicam que as estruturas propostas foram produzidas.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=2
http://doi.org/10.17771/PUCRio.acad.25898
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25898&idi=2
http://doi.org/10.17771/PUCRio.acad.25898
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1840643356737142784