Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina

Bibliographic Details
Main Author: Silva, Aline Cristina Reis da
Publication Date: 2023
Format: Master thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações da Uninove
Download full: http://bibliotecatede.uninove.br/handle/tede/3504
Summary: Visual methods are often used to subjectively classify human skin photo type. However, with advances in artificial intelligence technology, methods are emerging to improve medical diagnoses. The use of artificial intelligence to improve diagnostic medical care is a rapidly growing area of research, and this work presents a new perspective for classifying phototype using a simple color sensor and neural network. Melanin, a critical protein for protection against ultraviolet radiation, is the main determinant in defining skin phototype. Several methods can classify melanin concentration, such as clinical methodologies, visual comparisons and regional common sense. However, the Fitzpatrick Scale is widely used and classifies melanin concentration levels. The objective of this study is to develop a phototype classifier approach that can assist several medical areas, including cosmetics, dermatology, photobiomodulation and tattoo removal. The process used in this study used RGB data obtained from the color sensor reading, which was sent to a neural network built in KNIME. By analyzing the RGB color channels, it was revealed that the green and blue regions of the spectrum are key to skin color identification, resulting in an overall classification accuracy of 91%. The integration of the color sensor with artificial intelligence proved to be a tool, allowing independent readings of ambient lighting and insights into the patient's health. The research also overcame recruitment challenges and demonstrated the relevance of color sensors over traditional cameras, highlighting possible applications in the medical and cosmetic areas and the potential to enrich medical practice with artificial intelligence technologies.
id NOVE_a3b1243feecc866936cb4a844acf20c0
oai_identifier_str oai:localhost:tede/3504
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Deana, Alessandro Melohttp://lattes.cnpq.br/3678668865183045Deana, Alessandro Melohttp://lattes.cnpq.br/3678668865183045Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Prates, Renato Araujohttp://lattes.cnpq.br/7664790931310514http://lattes.cnpq.br/0159392151523831Silva, Aline Cristina Reis da2024-11-07T18:03:19Z2023-05-31Silva, Aline Cristina Reis da. Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina. 2023. 67 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3504Visual methods are often used to subjectively classify human skin photo type. However, with advances in artificial intelligence technology, methods are emerging to improve medical diagnoses. The use of artificial intelligence to improve diagnostic medical care is a rapidly growing area of research, and this work presents a new perspective for classifying phototype using a simple color sensor and neural network. Melanin, a critical protein for protection against ultraviolet radiation, is the main determinant in defining skin phototype. Several methods can classify melanin concentration, such as clinical methodologies, visual comparisons and regional common sense. However, the Fitzpatrick Scale is widely used and classifies melanin concentration levels. The objective of this study is to develop a phototype classifier approach that can assist several medical areas, including cosmetics, dermatology, photobiomodulation and tattoo removal. The process used in this study used RGB data obtained from the color sensor reading, which was sent to a neural network built in KNIME. By analyzing the RGB color channels, it was revealed that the green and blue regions of the spectrum are key to skin color identification, resulting in an overall classification accuracy of 91%. The integration of the color sensor with artificial intelligence proved to be a tool, allowing independent readings of ambient lighting and insights into the patient's health. The research also overcame recruitment challenges and demonstrated the relevance of color sensors over traditional cameras, highlighting possible applications in the medical and cosmetic areas and the potential to enrich medical practice with artificial intelligence technologies.Métodos visuais são frequentemente usados para classificar subjetivamente o tipo de foto de pele humana. No entanto, com os avanços da tecnologia de inteligência artificial, estão surgindo métodos para melhorar os diagnósticos médicos. O uso de inteligência artificial para melhorar o atendimento médico diagnóstico é uma área de pesquisa em rápido crescimento, e este trabalho apresenta uma nova perspectiva para classificar o fotótipo usando um sensor de cor simples e rede neural. A melanina, proteína crítica para a proteção contra a radiação ultravioleta, é o principal determinante na definição do fotótipo da pele. Vários métodos podem classificar a concentração de melanina, como metodologias clínicas, comparações visuais e senso comum regional. No entanto, a Escala de Fitzpatrick é amplamente utilizada e classifica os níveis de concentração de melanina. O objetivo deste estudo é desenvolver uma abordagem de classificador de fotótipos que possa auxiliar diversas áreas médicas, incluindo cosmética, dermatologia, fotobiomodulação e remoção de tatuagens. O processo empregado neste estudo utilizou os dados RGB obtidos da leitura do sensor de cor, sendo enviados para uma rede neural construída no KNIME. Ao analisar os canais de cores RGB, foi revelado que as regiões verde e azul do espectro são fundamentais para a identificação da cor da pele, resultando em uma precisão global de 91% na classificação. A integração do sensor de cor com a inteligência artificial demonstrou ser uma ferramenta, permitindo leituras independentes da iluminação ambiente e insights sobre a saúde do paciente. A pesquisa também superou desafios de recrutamento e demostrou a relevância dos sensores de cor sobre câmeras tradicionais, ressaltando em possibilidades de aplicações nas áreas médicas, cosméticas e o potencial para enriquecer a prática médica com tecnologias de inteligência artificial.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2024-11-07T18:03:19Z No. of bitstreams: 1 Aline Cristina Reis da Silva.pdf: 1421203 bytes, checksum: 13195845fcd4c52047fb881d825f2395 (MD5)Made available in DSpace on 2024-11-07T18:03:19Z (GMT). No. of bitstreams: 1 Aline Cristina Reis da Silva.pdf: 1421203 bytes, checksum: 13195845fcd4c52047fb881d825f2395 (MD5) Previous issue date: 2023-05-31application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticainteligência artificialescala Fitzpatricksensor de reconhecimento de corredes neuraisfotótipoartificial intelligenceFitzpatrick scalecolor recognition sensorneural networksphototypeCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOAnálise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquinaAnalysis of skin phototype through optical sensing and machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALAline Cristina Reis da Silva.pdfAline Cristina Reis da Silva.pdfapplication/pdf1421203http://localhost:8080/tede/bitstream/tede/3504/2/Aline+Cristina+Reis+da+Silva.pdf13195845fcd4c52047fb881d825f2395MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3504/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/35042024-11-07 15:03:19.853oai:localhost:tede/3504Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2024-11-07T18:03:19Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
dc.title.alternative.eng.fl_str_mv Analysis of skin phototype through optical sensing and machine learning
title Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
spellingShingle Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
Silva, Aline Cristina Reis da
inteligência artificial
escala Fitzpatrick
sensor de reconhecimento de cor
redes neurais
fotótipo
artificial intelligence
Fitzpatrick scale
color recognition sensor
neural networks
phototype
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
title_full Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
title_fullStr Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
title_full_unstemmed Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
title_sort Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina
author Silva, Aline Cristina Reis da
author_facet Silva, Aline Cristina Reis da
author_role author
dc.contributor.advisor1.fl_str_mv Deana, Alessandro Melo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3678668865183045
dc.contributor.referee1.fl_str_mv Deana, Alessandro Melo
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3678668865183045
dc.contributor.referee2.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.referee3.fl_str_mv Prates, Renato Araujo
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/7664790931310514
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0159392151523831
dc.contributor.author.fl_str_mv Silva, Aline Cristina Reis da
contributor_str_mv Deana, Alessandro Melo
Deana, Alessandro Melo
Araújo, Sidnei Alves de
Prates, Renato Araujo
dc.subject.por.fl_str_mv inteligência artificial
escala Fitzpatrick
sensor de reconhecimento de cor
redes neurais
fotótipo
topic inteligência artificial
escala Fitzpatrick
sensor de reconhecimento de cor
redes neurais
fotótipo
artificial intelligence
Fitzpatrick scale
color recognition sensor
neural networks
phototype
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv artificial intelligence
Fitzpatrick scale
color recognition sensor
neural networks
phototype
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description Visual methods are often used to subjectively classify human skin photo type. However, with advances in artificial intelligence technology, methods are emerging to improve medical diagnoses. The use of artificial intelligence to improve diagnostic medical care is a rapidly growing area of research, and this work presents a new perspective for classifying phototype using a simple color sensor and neural network. Melanin, a critical protein for protection against ultraviolet radiation, is the main determinant in defining skin phototype. Several methods can classify melanin concentration, such as clinical methodologies, visual comparisons and regional common sense. However, the Fitzpatrick Scale is widely used and classifies melanin concentration levels. The objective of this study is to develop a phototype classifier approach that can assist several medical areas, including cosmetics, dermatology, photobiomodulation and tattoo removal. The process used in this study used RGB data obtained from the color sensor reading, which was sent to a neural network built in KNIME. By analyzing the RGB color channels, it was revealed that the green and blue regions of the spectrum are key to skin color identification, resulting in an overall classification accuracy of 91%. The integration of the color sensor with artificial intelligence proved to be a tool, allowing independent readings of ambient lighting and insights into the patient's health. The research also overcame recruitment challenges and demonstrated the relevance of color sensors over traditional cameras, highlighting possible applications in the medical and cosmetic areas and the potential to enrich medical practice with artificial intelligence technologies.
publishDate 2023
dc.date.issued.fl_str_mv 2023-05-31
dc.date.accessioned.fl_str_mv 2024-11-07T18:03:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Silva, Aline Cristina Reis da. Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina. 2023. 67 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3504
identifier_str_mv Silva, Aline Cristina Reis da. Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina. 2023. 67 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3504
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3504/2/Aline+Cristina+Reis+da+Silva.pdf
http://localhost:8080/tede/bitstream/tede/3504/1/license.txt
bitstream.checksum.fl_str_mv 13195845fcd4c52047fb881d825f2395
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1841206984717631488