Fuzzy irrigation model in protected crop based on expert knowledge
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2025 |
| Outros Autores: | , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | ITEGAM-JETIA |
| Texto Completo: | https://itegam-jetia.org/journal/index.php/jetia/article/view/1926 |
Resumo: | Fuzzy logic is a subfield of Artificial Intelligence that allows human knowledge to be expressed naturally, through linguistic variables and values, and an inference process very similar to the one it uses daily. The present research uses expert criteria to design and evaluate a model based on a fuzzy system to predict the irrigation time of the protected crop of cucumber (Cucumis sativus L.). The variables temperature, soil moisture and lighting are used for the model construction, which is coupled to an existing IoT technology in the various crops company "Valle del Yabú", serving as a support system for decision making. The prototype is created and simulated in MATLAB, then transferred to a Raspberry Pi 4 Model B, using the Python programming language. Tests using a database collected during one crop cycle show a 10.07% reduction in water usage compared to the standard irrigation currently implemented by the company. |
| id |
ITEGAM_d82ec9e32c8443fa751fe45f0688ddf3 |
|---|---|
| oai_identifier_str |
oai:ojs.itegam-jetia.org:article/1926 |
| network_acronym_str |
ITEGAM |
| network_name_str |
ITEGAM-JETIA |
| repository_id_str |
|
| spelling |
Fuzzy irrigation model in protected crop based on expert knowledgeFuzzy logic is a subfield of Artificial Intelligence that allows human knowledge to be expressed naturally, through linguistic variables and values, and an inference process very similar to the one it uses daily. The present research uses expert criteria to design and evaluate a model based on a fuzzy system to predict the irrigation time of the protected crop of cucumber (Cucumis sativus L.). The variables temperature, soil moisture and lighting are used for the model construction, which is coupled to an existing IoT technology in the various crops company "Valle del Yabú", serving as a support system for decision making. The prototype is created and simulated in MATLAB, then transferred to a Raspberry Pi 4 Model B, using the Python programming language. Tests using a database collected during one crop cycle show a 10.07% reduction in water usage compared to the standard irrigation currently implemented by the company.A lógica difusa é um subcampo da Inteligência Artificial que permite que o conhecimento humano seja expresso de forma natural, através de variáveis e valores linguísticos, e de um processo de inferência muito semelhante ao que utiliza diariamente. A presente investigação utiliza critérios especializados para conceber e avaliar um modelo baseado num sistema fuzzy para prever o tempo de rega da cultura protegida de pepino (Cucumis sativus L.). As variáveis temperatura, humidade do solo e iluminação são utilizadas para a construção do modelo, que é acoplado a uma tecnologia IoT existente na empresa de várias culturas “Valle del Yabú”, servindo como um sistema de apoio à tomada de decisões. O protótipo é criado e simulado em MATLAB, sendo depois transferido para um Raspberry Pi 4 Modelo B, utilizando a linguagem de programação Python. Os testes realizados com uma base de dados recolhida durante um ciclo de cultivo mostram uma redução de 10,07% no consumo de água em comparação com a rega padrão atualmente implementada pela empresa.La lógica difusa es un subcampo de la Inteligencia Artificial que permite expresar el conocimiento humano de forma natural, mediante variables y valores lingüísticos, y un proceso de inferencia muy similar al que utiliza cotidianamente. La presente investigación utiliza criterios expertos para diseñar y evaluar un modelo basado en un sistema difuso para predecir el momento de riego del cultivo protegido de pepino (Cucumis sativus L.). Se utilizan las variables temperatura, humedad del suelo e iluminación para la construcción del modelo, el cual se acopla a una tecnología IoT existente en la empresa de cultivos varios «Valle del Yabú», sirviendo como sistema de apoyo para la toma de decisiones. El prototipo es creado y simulado en MATLAB, luego transferido a una Raspberry Pi 4 Modelo B, utilizando el lenguaje de programación Python. Las pruebas realizadas con una base de datos recopilada durante un ciclo de cultivo muestran una reducción del 10,07% en el uso de agua en comparación con el riego estándar implementado actualmente por la empresa.ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia2025-04-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://itegam-jetia.org/journal/index.php/jetia/article/view/192610.5935/jetia.v11i52.1926ITEGAM-JETIA; v.11 n.52 2025; 266-275ITEGAM-JETIA; v.11 n.52 2025; 266-275ITEGAM-JETIA; v.11 n.52 2025; 266-2752447-022810.5935/jetia.v11i52reponame:ITEGAM-JETIAinstname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)instacron:ITEGAMenghttps://itegam-jetia.org/journal/index.php/jetia/article/view/1926/1007Copyright (c) 2025 ITEGAM-JETIAinfo:eu-repo/semantics/openAccessGodo Alonso, AlainVillavicencio Quintero, Dennisabrera Hernández, Emilio CSantana Ching, Ivan2025-05-06T14:20:53Zoai:ojs.itegam-jetia.org:article/1926Revistahttps://itegam-jetia.org/journal/index.php/jetiaPRIhttps://itegam-jetia.org/journal/index.php/jetia/oaieditor@itegam-jetia.orgopendoar:2025-05-06T14:20:53ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)false |
| dc.title.none.fl_str_mv |
Fuzzy irrigation model in protected crop based on expert knowledge |
| title |
Fuzzy irrigation model in protected crop based on expert knowledge |
| spellingShingle |
Fuzzy irrigation model in protected crop based on expert knowledge Godo Alonso, Alain |
| title_short |
Fuzzy irrigation model in protected crop based on expert knowledge |
| title_full |
Fuzzy irrigation model in protected crop based on expert knowledge |
| title_fullStr |
Fuzzy irrigation model in protected crop based on expert knowledge |
| title_full_unstemmed |
Fuzzy irrigation model in protected crop based on expert knowledge |
| title_sort |
Fuzzy irrigation model in protected crop based on expert knowledge |
| author |
Godo Alonso, Alain |
| author_facet |
Godo Alonso, Alain Villavicencio Quintero, Dennis abrera Hernández, Emilio C Santana Ching, Ivan |
| author_role |
author |
| author2 |
Villavicencio Quintero, Dennis abrera Hernández, Emilio C Santana Ching, Ivan |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Godo Alonso, Alain Villavicencio Quintero, Dennis abrera Hernández, Emilio C Santana Ching, Ivan |
| description |
Fuzzy logic is a subfield of Artificial Intelligence that allows human knowledge to be expressed naturally, through linguistic variables and values, and an inference process very similar to the one it uses daily. The present research uses expert criteria to design and evaluate a model based on a fuzzy system to predict the irrigation time of the protected crop of cucumber (Cucumis sativus L.). The variables temperature, soil moisture and lighting are used for the model construction, which is coupled to an existing IoT technology in the various crops company "Valle del Yabú", serving as a support system for decision making. The prototype is created and simulated in MATLAB, then transferred to a Raspberry Pi 4 Model B, using the Python programming language. Tests using a database collected during one crop cycle show a 10.07% reduction in water usage compared to the standard irrigation currently implemented by the company. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-25 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://itegam-jetia.org/journal/index.php/jetia/article/view/1926 10.5935/jetia.v11i52.1926 |
| url |
https://itegam-jetia.org/journal/index.php/jetia/article/view/1926 |
| identifier_str_mv |
10.5935/jetia.v11i52.1926 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://itegam-jetia.org/journal/index.php/jetia/article/view/1926/1007 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2025 ITEGAM-JETIA info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2025 ITEGAM-JETIA |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia |
| publisher.none.fl_str_mv |
ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia |
| dc.source.none.fl_str_mv |
ITEGAM-JETIA; v.11 n.52 2025; 266-275 ITEGAM-JETIA; v.11 n.52 2025; 266-275 ITEGAM-JETIA; v.11 n.52 2025; 266-275 2447-0228 10.5935/jetia.v11i52 reponame:ITEGAM-JETIA instname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) instacron:ITEGAM |
| instname_str |
Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) |
| instacron_str |
ITEGAM |
| institution |
ITEGAM |
| reponame_str |
ITEGAM-JETIA |
| collection |
ITEGAM-JETIA |
| repository.name.fl_str_mv |
ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) |
| repository.mail.fl_str_mv |
editor@itegam-jetia.org |
| _version_ |
1837010820342480896 |