Sintonia automática de filtro de Kalman para navegação inercial auxiliada
Main Author: | |
---|---|
Publication Date: | 2012 |
Format: | Master thesis |
Language: | por |
Source: | Biblioteca Digital de Teses e Dissertações do ITA |
Download full: | http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093 |
Summary: | Sistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa. |
id |
ITA_df8025d5da05587996b29f1b76e40bdd |
---|---|
oai_identifier_str |
oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2093 |
network_acronym_str |
ITA |
network_name_str |
Biblioteca Digital de Teses e Dissertações do ITA |
spelling |
Sintonia automática de filtro de Kalman para navegação inercial auxiliadaNavegação inercialSistema de navegaçãoFiltros de KalmanSistema de posicionamento globalEngenharia aeronáuticaEngenharia eletrônicaSistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa.Instituto Tecnológico de AeronáuticaJacques WaldmannLeandro Ribeiro Lustosa2012-07-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:03:48Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2093http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:11.038Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue |
dc.title.none.fl_str_mv |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada |
title |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada |
spellingShingle |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada Leandro Ribeiro Lustosa Navegação inercial Sistema de navegação Filtros de Kalman Sistema de posicionamento global Engenharia aeronáutica Engenharia eletrônica |
title_short |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada |
title_full |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada |
title_fullStr |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada |
title_full_unstemmed |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada |
title_sort |
Sintonia automática de filtro de Kalman para navegação inercial auxiliada |
author |
Leandro Ribeiro Lustosa |
author_facet |
Leandro Ribeiro Lustosa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Jacques Waldmann |
dc.contributor.author.fl_str_mv |
Leandro Ribeiro Lustosa |
dc.subject.por.fl_str_mv |
Navegação inercial Sistema de navegação Filtros de Kalman Sistema de posicionamento global Engenharia aeronáutica Engenharia eletrônica |
topic |
Navegação inercial Sistema de navegação Filtros de Kalman Sistema de posicionamento global Engenharia aeronáutica Engenharia eletrônica |
dc.description.none.fl_txt_mv |
Sistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa. |
description |
Sistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-07-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093 |
url |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do ITA instname:Instituto Tecnológico de Aeronáutica instacron:ITA |
reponame_str |
Biblioteca Digital de Teses e Dissertações do ITA |
collection |
Biblioteca Digital de Teses e Dissertações do ITA |
instname_str |
Instituto Tecnológico de Aeronáutica |
instacron_str |
ITA |
institution |
ITA |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica |
repository.mail.fl_str_mv |
|
subject_por_txtF_mv |
Navegação inercial Sistema de navegação Filtros de Kalman Sistema de posicionamento global Engenharia aeronáutica Engenharia eletrônica |
_version_ |
1706809279282937856 |