Sintonia automática de filtro de Kalman para navegação inercial auxiliada

Bibliographic Details
Main Author: Leandro Ribeiro Lustosa
Publication Date: 2012
Format: Master thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações do ITA
Download full: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093
Summary: Sistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa.
id ITA_df8025d5da05587996b29f1b76e40bdd
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2093
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Sintonia automática de filtro de Kalman para navegação inercial auxiliadaNavegação inercialSistema de navegaçãoFiltros de KalmanSistema de posicionamento globalEngenharia aeronáuticaEngenharia eletrônicaSistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa.Instituto Tecnológico de AeronáuticaJacques WaldmannLeandro Ribeiro Lustosa2012-07-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:03:48Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2093http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:11.038Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Sintonia automática de filtro de Kalman para navegação inercial auxiliada
title Sintonia automática de filtro de Kalman para navegação inercial auxiliada
spellingShingle Sintonia automática de filtro de Kalman para navegação inercial auxiliada
Leandro Ribeiro Lustosa
Navegação inercial
Sistema de navegação
Filtros de Kalman
Sistema de posicionamento global
Engenharia aeronáutica
Engenharia eletrônica
title_short Sintonia automática de filtro de Kalman para navegação inercial auxiliada
title_full Sintonia automática de filtro de Kalman para navegação inercial auxiliada
title_fullStr Sintonia automática de filtro de Kalman para navegação inercial auxiliada
title_full_unstemmed Sintonia automática de filtro de Kalman para navegação inercial auxiliada
title_sort Sintonia automática de filtro de Kalman para navegação inercial auxiliada
author Leandro Ribeiro Lustosa
author_facet Leandro Ribeiro Lustosa
author_role author
dc.contributor.none.fl_str_mv Jacques Waldmann
dc.contributor.author.fl_str_mv Leandro Ribeiro Lustosa
dc.subject.por.fl_str_mv Navegação inercial
Sistema de navegação
Filtros de Kalman
Sistema de posicionamento global
Engenharia aeronáutica
Engenharia eletrônica
topic Navegação inercial
Sistema de navegação
Filtros de Kalman
Sistema de posicionamento global
Engenharia aeronáutica
Engenharia eletrônica
dc.description.none.fl_txt_mv Sistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa.
description Sistemas de navegação inercial (INS) possuem erros de posição, velocidade e atitude divergentes com o tempo em uma taxa dependente da precisão dos sensores inerciais. Por outro lado, as taxas divergentes da INS, sistemas de posicionamento global por satélites (GNSS) e dispositivos imageadores (SD) fornecem medidas de posição, velocidade e desalinhamento com erros limitados e em baixas frequências. A complementariedade das características dos sistemas motiva a fusão de dados. A estratégia tradicional de integração é o filtro de Kalman extendido (EKF) como estimador do vetor de erros. Sob certas condições, o filtro de Kalman é o estimador ótimo sob ampla variedade de critérios. Essas condições necessitam de uma modelagem acurada da dinâmica da planta e da sintonia das estatísticas do ruído de modelo e sensores. Portanto, erros de modelagem e sintonia impossibilitam otimalidade e consistência estatística do erro de estimação do filtro e ainda podem levá-lo à divergência. O presente trabalho aborda o problema de buscar a consistência estatística na operação do filtro de Kalman estendido através de técnicas de sintonia automática do ruído de modelagem, a saber, Estimação Adaptativa baseada em Inovação (IAE) e Escalonamento do Ruído de Modelo (SPN). Será experimentalmente demonstrado que IAE falha ao sintonizar o filtro. Será proposta uma alteração na estratégia IAE, a saber, Estimação Adaptativa baseada em Inovação Parcial (IAEP), que deixará o filtro consistente e habilitado a fornecer uma solução de navegação satisfatória. Resultados são obtidos por simulações, onde um veículo aéreo não-tripulado voa uma trajetória conhecida com medidas de sensores inerciais corrompidas por um modelo de constante aleatória e ruído branco. Erros de posição e velocidade, desalinhamento, bias de acelerômetro, deriva de girômetro e erros de relógio GNSS são estimados através da fusão INS/GNSS/SD e testados para consistência estatística em diversos cenários. Adicionalmente, o algoritmo de navegação inercial operando autonomamente é avaliado através de dados reais obtidos em um experimento em montanha-russa.
publishDate 2012
dc.date.none.fl_str_mv 2012-07-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2093
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Navegação inercial
Sistema de navegação
Filtros de Kalman
Sistema de posicionamento global
Engenharia aeronáutica
Engenharia eletrônica
_version_ 1706809279282937856