A study on the extension of an upwind parallel solver for turbulent flow applications
Main Author: | |
---|---|
Publication Date: | 2012 |
Format: | Master thesis |
Language: | eng |
Source: | Biblioteca Digital de Teses e Dissertações do ITA |
Download full: | http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1991 |
Summary: | The present work is primarily concerned with studying the influence of an upwind spatial discretization on the capability of representing turbulent flows on aerospace applications, in the context of a flow simulation code that is fairly close to a production code. Therefore, the work addresses the issues of implementing and validating an advanced turbulence model for high Reynolds number aerospace applications in the context of an existing flux-vector splitting simulation tool, which incorporates several advances in current CFD practice, including parallel processing. The flow simulation tool used in the present work was originally developed for high speed, high altitude, hypersonic applications. Hence, the code did not include any provisions for turbulence modeling, since most flows at these conditions can be adequately treated as laminar flows. Moreover, due to the presence of strong shock waves, which are typical of hypersonic applications, a very dissipative spatial discretization scheme, based on the upwind flux vector splitting concept, was employed in the construction of the inviscid numerical fluxes. Therefore, the use of such a tool for the simulation of turbulent aerospace flows requires the implementation of a turbulence closure, as well as an adequate treatment of the excessive artificial dissipation automatically generated by the original spatial discretization scheme. In the present case, the flows of interest are simulated using the three-dimensional Reynolds-averaged Navier-Stokes equations. The turbulence closure considered is the one-equation, eddy viscosity, Spalart-Allmaras model. The work discusses in detail the theoretical and numerical formulation of the selected model, as well as the validation studies. The work also demonstrates how the spatial discretization scheme is selectively modified such that the flow simulation tool remains robust for high speed applications at the same time that it can accurately compute turbulent boundary layers. Furthermore, the work also addresses the parallelization and other high performance computational issues, demonstrating that the resultant flow simulation code can achieve adequate performance on current multi-CPU, multi-core computational clusters. Finally, the work discusses issues that could be considered for the continuation of the research effort here undertaken. |
id |
ITA_154ba9239490c004a35c5f9ad5b366d8 |
---|---|
oai_identifier_str |
oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1991 |
network_acronym_str |
ITA |
network_name_str |
Biblioteca Digital de Teses e Dissertações do ITA |
spelling |
A study on the extension of an upwind parallel solver for turbulent flow applicationsDinâmica dos fluidos computacionalEscoamento turbulentoSimulação do escoamentoMalhas não-estruturadas (Matemática)Equação de Navier-StokesMecânica dos fluidosFísicaThe present work is primarily concerned with studying the influence of an upwind spatial discretization on the capability of representing turbulent flows on aerospace applications, in the context of a flow simulation code that is fairly close to a production code. Therefore, the work addresses the issues of implementing and validating an advanced turbulence model for high Reynolds number aerospace applications in the context of an existing flux-vector splitting simulation tool, which incorporates several advances in current CFD practice, including parallel processing. The flow simulation tool used in the present work was originally developed for high speed, high altitude, hypersonic applications. Hence, the code did not include any provisions for turbulence modeling, since most flows at these conditions can be adequately treated as laminar flows. Moreover, due to the presence of strong shock waves, which are typical of hypersonic applications, a very dissipative spatial discretization scheme, based on the upwind flux vector splitting concept, was employed in the construction of the inviscid numerical fluxes. Therefore, the use of such a tool for the simulation of turbulent aerospace flows requires the implementation of a turbulence closure, as well as an adequate treatment of the excessive artificial dissipation automatically generated by the original spatial discretization scheme. In the present case, the flows of interest are simulated using the three-dimensional Reynolds-averaged Navier-Stokes equations. The turbulence closure considered is the one-equation, eddy viscosity, Spalart-Allmaras model. The work discusses in detail the theoretical and numerical formulation of the selected model, as well as the validation studies. The work also demonstrates how the spatial discretization scheme is selectively modified such that the flow simulation tool remains robust for high speed applications at the same time that it can accurately compute turbulent boundary layers. Furthermore, the work also addresses the parallelization and other high performance computational issues, demonstrating that the resultant flow simulation code can achieve adequate performance on current multi-CPU, multi-core computational clusters. Finally, the work discusses issues that could be considered for the continuation of the research effort here undertaken.Instituto Tecnológico de AeronáuticaJoão Luiz Filgueiras de AzevedoCarlos Alberto Junqueira Branco Junior2012-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1991reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:03:45Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1991http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:37:50.039Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue |
dc.title.none.fl_str_mv |
A study on the extension of an upwind parallel solver for turbulent flow applications |
title |
A study on the extension of an upwind parallel solver for turbulent flow applications |
spellingShingle |
A study on the extension of an upwind parallel solver for turbulent flow applications Carlos Alberto Junqueira Branco Junior Dinâmica dos fluidos computacional Escoamento turbulento Simulação do escoamento Malhas não-estruturadas (Matemática) Equação de Navier-Stokes Mecânica dos fluidos Física |
title_short |
A study on the extension of an upwind parallel solver for turbulent flow applications |
title_full |
A study on the extension of an upwind parallel solver for turbulent flow applications |
title_fullStr |
A study on the extension of an upwind parallel solver for turbulent flow applications |
title_full_unstemmed |
A study on the extension of an upwind parallel solver for turbulent flow applications |
title_sort |
A study on the extension of an upwind parallel solver for turbulent flow applications |
author |
Carlos Alberto Junqueira Branco Junior |
author_facet |
Carlos Alberto Junqueira Branco Junior |
author_role |
author |
dc.contributor.none.fl_str_mv |
João Luiz Filgueiras de Azevedo |
dc.contributor.author.fl_str_mv |
Carlos Alberto Junqueira Branco Junior |
dc.subject.por.fl_str_mv |
Dinâmica dos fluidos computacional Escoamento turbulento Simulação do escoamento Malhas não-estruturadas (Matemática) Equação de Navier-Stokes Mecânica dos fluidos Física |
topic |
Dinâmica dos fluidos computacional Escoamento turbulento Simulação do escoamento Malhas não-estruturadas (Matemática) Equação de Navier-Stokes Mecânica dos fluidos Física |
dc.description.none.fl_txt_mv |
The present work is primarily concerned with studying the influence of an upwind spatial discretization on the capability of representing turbulent flows on aerospace applications, in the context of a flow simulation code that is fairly close to a production code. Therefore, the work addresses the issues of implementing and validating an advanced turbulence model for high Reynolds number aerospace applications in the context of an existing flux-vector splitting simulation tool, which incorporates several advances in current CFD practice, including parallel processing. The flow simulation tool used in the present work was originally developed for high speed, high altitude, hypersonic applications. Hence, the code did not include any provisions for turbulence modeling, since most flows at these conditions can be adequately treated as laminar flows. Moreover, due to the presence of strong shock waves, which are typical of hypersonic applications, a very dissipative spatial discretization scheme, based on the upwind flux vector splitting concept, was employed in the construction of the inviscid numerical fluxes. Therefore, the use of such a tool for the simulation of turbulent aerospace flows requires the implementation of a turbulence closure, as well as an adequate treatment of the excessive artificial dissipation automatically generated by the original spatial discretization scheme. In the present case, the flows of interest are simulated using the three-dimensional Reynolds-averaged Navier-Stokes equations. The turbulence closure considered is the one-equation, eddy viscosity, Spalart-Allmaras model. The work discusses in detail the theoretical and numerical formulation of the selected model, as well as the validation studies. The work also demonstrates how the spatial discretization scheme is selectively modified such that the flow simulation tool remains robust for high speed applications at the same time that it can accurately compute turbulent boundary layers. Furthermore, the work also addresses the parallelization and other high performance computational issues, demonstrating that the resultant flow simulation code can achieve adequate performance on current multi-CPU, multi-core computational clusters. Finally, the work discusses issues that could be considered for the continuation of the research effort here undertaken. |
description |
The present work is primarily concerned with studying the influence of an upwind spatial discretization on the capability of representing turbulent flows on aerospace applications, in the context of a flow simulation code that is fairly close to a production code. Therefore, the work addresses the issues of implementing and validating an advanced turbulence model for high Reynolds number aerospace applications in the context of an existing flux-vector splitting simulation tool, which incorporates several advances in current CFD practice, including parallel processing. The flow simulation tool used in the present work was originally developed for high speed, high altitude, hypersonic applications. Hence, the code did not include any provisions for turbulence modeling, since most flows at these conditions can be adequately treated as laminar flows. Moreover, due to the presence of strong shock waves, which are typical of hypersonic applications, a very dissipative spatial discretization scheme, based on the upwind flux vector splitting concept, was employed in the construction of the inviscid numerical fluxes. Therefore, the use of such a tool for the simulation of turbulent aerospace flows requires the implementation of a turbulence closure, as well as an adequate treatment of the excessive artificial dissipation automatically generated by the original spatial discretization scheme. In the present case, the flows of interest are simulated using the three-dimensional Reynolds-averaged Navier-Stokes equations. The turbulence closure considered is the one-equation, eddy viscosity, Spalart-Allmaras model. The work discusses in detail the theoretical and numerical formulation of the selected model, as well as the validation studies. The work also demonstrates how the spatial discretization scheme is selectively modified such that the flow simulation tool remains robust for high speed applications at the same time that it can accurately compute turbulent boundary layers. Furthermore, the work also addresses the parallelization and other high performance computational issues, demonstrating that the resultant flow simulation code can achieve adequate performance on current multi-CPU, multi-core computational clusters. Finally, the work discusses issues that could be considered for the continuation of the research effort here undertaken. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1991 |
url |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1991 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do ITA instname:Instituto Tecnológico de Aeronáutica instacron:ITA |
reponame_str |
Biblioteca Digital de Teses e Dissertações do ITA |
collection |
Biblioteca Digital de Teses e Dissertações do ITA |
instname_str |
Instituto Tecnológico de Aeronáutica |
instacron_str |
ITA |
institution |
ITA |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica |
repository.mail.fl_str_mv |
|
subject_por_txtF_mv |
Dinâmica dos fluidos computacional Escoamento turbulento Simulação do escoamento Malhas não-estruturadas (Matemática) Equação de Navier-Stokes Mecânica dos fluidos Física |
_version_ |
1706809277596827648 |