Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Other Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da INSPER |
| Download full: | https://repositorio.insper.edu.br/handle/11224/7325 |
Summary: | Aquatic macrophyte is a generic denomination for macro-algae with active photosynthetic parts that remain totally or partially submerged in fresh or salty water, in rivers and lakes. Currently, algae monitoring is carried out manually by collecting samples to send for laboratory analysis. In most cases, harmful algal blooms are already widespread when the results are disclosed. This paper proposes the application of a team of heterogeneous Unmanned Aerial Vehicles (UAVs) that cooperate to increase the system’s overall observation range and reduce the reaction time. Leader UAV, featured with a deep-learning based vision system, covers a pre-determined region and determines high-interest inspection areas in real-time. Through a multi-robot Informative Path Planning (MIPP) approach, the leader UAV coordinates a team of customized quadcopter (named ART2) to reach points of interest, managing their route dynamically. ART2s are able to land on water, and collect and test samples in situ by applying phosphorescence sensors. While path planning, task assignment, and route management are centralized operations, each UAV is conducted by a decentralized trajectory tracking control. Simulations performed in a realistic environment implemented on the Unity platform and experimental proof of concepts demonstrated the reliability of the proposed approach. The presented multi-UAV framework with heterogeneous agents also enables the reconfiguration and expansion of specific objectives, in addition to minimizing the task completion time by executing different processes in parallel. This preventive monitoring enables a plague control action in advance, solving it faster, cheaper, and more effectively. |
| id |
INSP_9f5fc42c8ae4b63792aee55ffbdeef6e |
|---|---|
| oai_identifier_str |
oai:repositorio.insper.edu.br:11224/7325 |
| network_acronym_str |
INSP |
| network_name_str |
Repositório Institucional da INSPER |
| repository_id_str |
|
| spelling |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic MacrophytesMulti-UAVCollaborationCyanobacterial bloomsAquatic macrophytesAquatic macrophyte is a generic denomination for macro-algae with active photosynthetic parts that remain totally or partially submerged in fresh or salty water, in rivers and lakes. Currently, algae monitoring is carried out manually by collecting samples to send for laboratory analysis. In most cases, harmful algal blooms are already widespread when the results are disclosed. This paper proposes the application of a team of heterogeneous Unmanned Aerial Vehicles (UAVs) that cooperate to increase the system’s overall observation range and reduce the reaction time. Leader UAV, featured with a deep-learning based vision system, covers a pre-determined region and determines high-interest inspection areas in real-time. Through a multi-robot Informative Path Planning (MIPP) approach, the leader UAV coordinates a team of customized quadcopter (named ART2) to reach points of interest, managing their route dynamically. ART2s are able to land on water, and collect and test samples in situ by applying phosphorescence sensors. While path planning, task assignment, and route management are centralized operations, each UAV is conducted by a decentralized trajectory tracking control. Simulations performed in a realistic environment implemented on the Unity platform and experimental proof of concepts demonstrated the reliability of the proposed approach. The presented multi-UAV framework with heterogeneous agents also enables the reconfiguration and expansion of specific objectives, in addition to minimizing the task completion time by executing different processes in parallel. This preventive monitoring enables a plague control action in advance, solving it faster, cheaper, and more effectively.2025-01-29T19:51:36Z2025-01-29T19:51:36Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleDigital27 p.application/pdfapplication/pdfhttps://repositorio.insper.edu.br/handle/11224/732510.1007/s10846-023-02043-6Journal of Intelligent & Robotic SystemsVivaldini, Kelen C. T.Pazelli, Tatiana F. P. A. T.Rocha, Lidia G. S.Santos, Igor A. D.Caldas, Kenny A. Q.Soler, Diego PavanBenevides, João R. S.Simplício, Paulo V. G.Hernandes, André C.Andrade, Kleber O.Kim, Pedro H. C.Alvarez, Isaac G.Nascimento, Eduardo V.Santos, Marcela A. A.Almeida, Aline G.Cavalcanti, Lucas H. G.Inoue, Roberto S.Terra, Marco H.Becker, MarceloVivaldini, Kelen C. T.Pazelli, Tatiana F. P. A. T.Rocha, Lidia G. S.Santos, Igor A. D.Caldas, Kenny A. Q.Soler, Diego PavanBenevides, João R. S.Simplício, Paulo V. G.Hernandes, André C.Andrade, Kleber O.Kim, Pedro H. C.Alvarez, Isaac G.Nascimento, Eduardo V.Santos, Marcela A. A.Almeida, Aline G.Cavalcanti, Lucas H. G.Inoue, Roberto S.Terra, Marco H.Becker, Marceloengreponame:Repositório Institucional da INSPERinstname:Instituição de Ensino Superior e de Pesquisa (INSPER)instacron:INSPERinfo:eu-repo/semantics/openAccess2025-08-18T14:38:05Zoai:repositorio.insper.edu.br:11224/7325Biblioteca Digital de Teses e Dissertaçõeshttps://www.insper.edu.br/biblioteca-telles/PRIhttps://repositorio.insper.edu.br/oai/requestbiblioteca@insper.edu.br || conteudobiblioteca@insper.edu.bropendoar:2025-08-18T14:38:05Repositório Institucional da INSPER - Instituição de Ensino Superior e de Pesquisa (INSPER)false |
| dc.title.none.fl_str_mv |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes |
| title |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes |
| spellingShingle |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes Vivaldini, Kelen C. T. Multi-UAV Collaboration Cyanobacterial blooms Aquatic macrophytes |
| title_short |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes |
| title_full |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes |
| title_fullStr |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes |
| title_full_unstemmed |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes |
| title_sort |
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes |
| author |
Vivaldini, Kelen C. T. |
| author_facet |
Vivaldini, Kelen C. T. Pazelli, Tatiana F. P. A. T. Rocha, Lidia G. S. Santos, Igor A. D. Caldas, Kenny A. Q. Soler, Diego Pavan Benevides, João R. S. Simplício, Paulo V. G. Hernandes, André C. Andrade, Kleber O. Kim, Pedro H. C. Alvarez, Isaac G. Nascimento, Eduardo V. Santos, Marcela A. A. Almeida, Aline G. Cavalcanti, Lucas H. G. Inoue, Roberto S. Terra, Marco H. Becker, Marcelo |
| author_role |
author |
| author2 |
Pazelli, Tatiana F. P. A. T. Rocha, Lidia G. S. Santos, Igor A. D. Caldas, Kenny A. Q. Soler, Diego Pavan Benevides, João R. S. Simplício, Paulo V. G. Hernandes, André C. Andrade, Kleber O. Kim, Pedro H. C. Alvarez, Isaac G. Nascimento, Eduardo V. Santos, Marcela A. A. Almeida, Aline G. Cavalcanti, Lucas H. G. Inoue, Roberto S. Terra, Marco H. Becker, Marcelo |
| author2_role |
author author author author author author author author author author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Vivaldini, Kelen C. T. Pazelli, Tatiana F. P. A. T. Rocha, Lidia G. S. Santos, Igor A. D. Caldas, Kenny A. Q. Soler, Diego Pavan Benevides, João R. S. Simplício, Paulo V. G. Hernandes, André C. Andrade, Kleber O. Kim, Pedro H. C. Alvarez, Isaac G. Nascimento, Eduardo V. Santos, Marcela A. A. Almeida, Aline G. Cavalcanti, Lucas H. G. Inoue, Roberto S. Terra, Marco H. Becker, Marcelo Vivaldini, Kelen C. T. Pazelli, Tatiana F. P. A. T. Rocha, Lidia G. S. Santos, Igor A. D. Caldas, Kenny A. Q. Soler, Diego Pavan Benevides, João R. S. Simplício, Paulo V. G. Hernandes, André C. Andrade, Kleber O. Kim, Pedro H. C. Alvarez, Isaac G. Nascimento, Eduardo V. Santos, Marcela A. A. Almeida, Aline G. Cavalcanti, Lucas H. G. Inoue, Roberto S. Terra, Marco H. Becker, Marcelo |
| dc.subject.por.fl_str_mv |
Multi-UAV Collaboration Cyanobacterial blooms Aquatic macrophytes |
| topic |
Multi-UAV Collaboration Cyanobacterial blooms Aquatic macrophytes |
| description |
Aquatic macrophyte is a generic denomination for macro-algae with active photosynthetic parts that remain totally or partially submerged in fresh or salty water, in rivers and lakes. Currently, algae monitoring is carried out manually by collecting samples to send for laboratory analysis. In most cases, harmful algal blooms are already widespread when the results are disclosed. This paper proposes the application of a team of heterogeneous Unmanned Aerial Vehicles (UAVs) that cooperate to increase the system’s overall observation range and reduce the reaction time. Leader UAV, featured with a deep-learning based vision system, covers a pre-determined region and determines high-interest inspection areas in real-time. Through a multi-robot Informative Path Planning (MIPP) approach, the leader UAV coordinates a team of customized quadcopter (named ART2) to reach points of interest, managing their route dynamically. ART2s are able to land on water, and collect and test samples in situ by applying phosphorescence sensors. While path planning, task assignment, and route management are centralized operations, each UAV is conducted by a decentralized trajectory tracking control. Simulations performed in a realistic environment implemented on the Unity platform and experimental proof of concepts demonstrated the reliability of the proposed approach. The presented multi-UAV framework with heterogeneous agents also enables the reconfiguration and expansion of specific objectives, in addition to minimizing the task completion time by executing different processes in parallel. This preventive monitoring enables a plague control action in advance, solving it faster, cheaper, and more effectively. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024 2025-01-29T19:51:36Z 2025-01-29T19:51:36Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.insper.edu.br/handle/11224/7325 10.1007/s10846-023-02043-6 |
| url |
https://repositorio.insper.edu.br/handle/11224/7325 |
| identifier_str_mv |
10.1007/s10846-023-02043-6 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Journal of Intelligent & Robotic Systems |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Digital 27 p. application/pdf application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da INSPER instname:Instituição de Ensino Superior e de Pesquisa (INSPER) instacron:INSPER |
| instname_str |
Instituição de Ensino Superior e de Pesquisa (INSPER) |
| instacron_str |
INSPER |
| institution |
INSPER |
| reponame_str |
Repositório Institucional da INSPER |
| collection |
Repositório Institucional da INSPER |
| repository.name.fl_str_mv |
Repositório Institucional da INSPER - Instituição de Ensino Superior e de Pesquisa (INSPER) |
| repository.mail.fl_str_mv |
biblioteca@insper.edu.br || conteudobiblioteca@insper.edu.br |
| _version_ |
1854949759227265024 |