Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Doctoral thesis |
Language: | eng |
Source: | Biblioteca Digital de Teses e Dissertações do INPE |
Download full: | http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01 |
Summary: | A promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology. |
id |
INPE_3ad21b64f3f4e55581c79e59b30ffa5d |
---|---|
oai_identifier_str |
oai:urlib.net:sid.inpe.br/mtc-m21c/2019/03.20.17.01.06-0 |
network_acronym_str |
INPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações do INPE |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisGap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentationPreenchimento de lacunas em cubo de dados de sensoriamento remoto ótico multifonte por meio de segmentação multinível e segmentação multitemporal2019-03-27Leila Maria Garcia FonsecaSidnei João Siqueira Sant'AnnaThales Sehn KörtingGiovanni de Araujo BoggioneSilvia Helena Modenese Gorla da SilvaRennan de Freitas Bezerra MarujoInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Computação AplicadaINPEBRTime series analysismulti-sourcedata cubegap-fillingsegmentationanálise de séries temporaissensoriamento remoto multifontecubo de dadospreenchimento de lacunassegmentaçãoA promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology.Uma solução promissora para suprimir a ausência de dados de observações da Terra em imagens multi-espectrais, devido principalmente pela presença de nuvens, sombra de nuvens, defeitos na aquisição de dados e imagens parciais, tem sido a integração de dados multi-sensor. Contudo, deve-se harmonizar os dados provenientes de diferentes sensores para que estes possam ser comparáveis entre sí, além de que, lacunas de dados devem ser consideradas. Neste contexto, na presente pesquisa propõe-se um procedimento para construir um cubo de dados multispectral, multifonte e livre de lacunas, que envolve harmonização e reconstrução de dados da superfície terrestre. Para tanto, foram testados dois procedimentos de harmonização, um baseado em regressão linear e o segundo baseado em modelo linear de mistura espectral. Além disso, propoe-se um procedimento espaço-temporal para preenchimento de lacunas que não requer referência prévia da área. Foram desenvolvidas duas abordagens para preenchimento de lacunas, aplicadas serialmente. A primeira abordagem visa aprimorar um método baseado no contexto espacial para preencher lacunas oriundas de pequenas nuvens e defeitos do sensor Landsat-7/ETM+. A segunda abordagem de preenchimento de lacunas utiliza regiões homogêneas obtidas por meio de segmentação multitemporal para preencher as lacunas restantes do cubo de dados. As estratégias de preenchimento de lacunas são aplicadas em dois cubos de dados de imagem em duas áreas de estudo. Um cubo foi gerado a partir de um conjunto de dados composto por imagens Landsat-7/ETM+ e Landsat-8/OLI, e o segundo incluindo também imagens CBERS-4/MUX neste conjunto de dados. Para validar o procedimento de preenchimento de lacunas, foram simuladas lacunas artificiais nas imagens e, posteriormente, comparou-se as imagens originais com as imagens preenchidas. A abordagem baseada no fator de ponderação superou o método original para todas as bandas e apresentou R2 maior que 0,90 e um V IF com valores superiores a 0,97, enquanto manteve assintóticamente o custo computacional do algoritmo. As imagens resultantes utilizando o método proposto tiveram sua textura preservada, além de também ser capaz de detectar características estreitas nelas, por exemplo, estradas, áreas ribeirinhas e pequenos riachos. A segunda abordagem baseada na segmentação multitemporal, preencheu as lacunas restantes, um total de 43,64% de todo o cubo de dados. No entanto, os resultados obtidos nesta abordagem foram mais incertos e a textura das áreas estimadas é afetada, resultando em um preenchimento homogêneo. As áreas resultantes no processo de harmonização e reconstrução apresentaram-se bastante similares as originais, apresentando um UIQI de pelo menos 0,92 e V IF variando entre 0,6 e 0,7, demonstrando a viabilidade da metodologia.http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:55:59Zoai:urlib.net:sid.inpe.br/mtc-m21c/2019/03.20.17.01.06-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:00.103Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false |
dc.title.en.fl_str_mv |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation |
dc.title.alternative.pt.fl_str_mv |
Preenchimento de lacunas em cubo de dados de sensoriamento remoto ótico multifonte por meio de segmentação multinível e segmentação multitemporal |
title |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation |
spellingShingle |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation Rennan de Freitas Bezerra Marujo |
title_short |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation |
title_full |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation |
title_fullStr |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation |
title_full_unstemmed |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation |
title_sort |
Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation |
author |
Rennan de Freitas Bezerra Marujo |
author_facet |
Rennan de Freitas Bezerra Marujo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Leila Maria Garcia Fonseca |
dc.contributor.referee1.fl_str_mv |
Sidnei João Siqueira Sant'Anna |
dc.contributor.referee2.fl_str_mv |
Thales Sehn Körting |
dc.contributor.referee3.fl_str_mv |
Giovanni de Araujo Boggione |
dc.contributor.referee4.fl_str_mv |
Silvia Helena Modenese Gorla da Silva |
dc.contributor.author.fl_str_mv |
Rennan de Freitas Bezerra Marujo |
contributor_str_mv |
Leila Maria Garcia Fonseca Sidnei João Siqueira Sant'Anna Thales Sehn Körting Giovanni de Araujo Boggione Silvia Helena Modenese Gorla da Silva |
dc.description.abstract.por.fl_txt_mv |
A promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology. Uma solução promissora para suprimir a ausência de dados de observações da Terra em imagens multi-espectrais, devido principalmente pela presença de nuvens, sombra de nuvens, defeitos na aquisição de dados e imagens parciais, tem sido a integração de dados multi-sensor. Contudo, deve-se harmonizar os dados provenientes de diferentes sensores para que estes possam ser comparáveis entre sí, além de que, lacunas de dados devem ser consideradas. Neste contexto, na presente pesquisa propõe-se um procedimento para construir um cubo de dados multispectral, multifonte e livre de lacunas, que envolve harmonização e reconstrução de dados da superfície terrestre. Para tanto, foram testados dois procedimentos de harmonização, um baseado em regressão linear e o segundo baseado em modelo linear de mistura espectral. Além disso, propoe-se um procedimento espaço-temporal para preenchimento de lacunas que não requer referência prévia da área. Foram desenvolvidas duas abordagens para preenchimento de lacunas, aplicadas serialmente. A primeira abordagem visa aprimorar um método baseado no contexto espacial para preencher lacunas oriundas de pequenas nuvens e defeitos do sensor Landsat-7/ETM+. A segunda abordagem de preenchimento de lacunas utiliza regiões homogêneas obtidas por meio de segmentação multitemporal para preencher as lacunas restantes do cubo de dados. As estratégias de preenchimento de lacunas são aplicadas em dois cubos de dados de imagem em duas áreas de estudo. Um cubo foi gerado a partir de um conjunto de dados composto por imagens Landsat-7/ETM+ e Landsat-8/OLI, e o segundo incluindo também imagens CBERS-4/MUX neste conjunto de dados. Para validar o procedimento de preenchimento de lacunas, foram simuladas lacunas artificiais nas imagens e, posteriormente, comparou-se as imagens originais com as imagens preenchidas. A abordagem baseada no fator de ponderação superou o método original para todas as bandas e apresentou R2 maior que 0,90 e um V IF com valores superiores a 0,97, enquanto manteve assintóticamente o custo computacional do algoritmo. As imagens resultantes utilizando o método proposto tiveram sua textura preservada, além de também ser capaz de detectar características estreitas nelas, por exemplo, estradas, áreas ribeirinhas e pequenos riachos. A segunda abordagem baseada na segmentação multitemporal, preencheu as lacunas restantes, um total de 43,64% de todo o cubo de dados. No entanto, os resultados obtidos nesta abordagem foram mais incertos e a textura das áreas estimadas é afetada, resultando em um preenchimento homogêneo. As áreas resultantes no processo de harmonização e reconstrução apresentaram-se bastante similares as originais, apresentando um UIQI de pelo menos 0,92 e V IF variando entre 0,6 e 0,7, demonstrando a viabilidade da metodologia. |
description |
A promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-03-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01 |
url |
http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação do INPE em Computação Aplicada |
dc.publisher.initials.fl_str_mv |
INPE |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do INPE instname:Instituto Nacional de Pesquisas Espaciais (INPE) instacron:INPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do INPE |
collection |
Biblioteca Digital de Teses e Dissertações do INPE |
instname_str |
Instituto Nacional de Pesquisas Espaciais (INPE) |
instacron_str |
INPE |
institution |
INPE |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE) |
repository.mail.fl_str_mv |
|
publisher_program_txtF_mv |
Programa de Pós-Graduação do INPE em Computação Aplicada |
contributor_advisor1_txtF_mv |
Leila Maria Garcia Fonseca |
_version_ |
1706809362314428416 |