Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation

Bibliographic Details
Main Author: Rennan de Freitas Bezerra Marujo
Publication Date: 2019
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações do INPE
Download full: http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01
Summary: A promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology.
id INPE_3ad21b64f3f4e55581c79e59b30ffa5d
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2019/03.20.17.01.06-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisGap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentationPreenchimento de lacunas em cubo de dados de sensoriamento remoto ótico multifonte por meio de segmentação multinível e segmentação multitemporal2019-03-27Leila Maria Garcia FonsecaSidnei João Siqueira Sant'AnnaThales Sehn KörtingGiovanni de Araujo BoggioneSilvia Helena Modenese Gorla da SilvaRennan de Freitas Bezerra MarujoInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Computação AplicadaINPEBRTime series analysismulti-sourcedata cubegap-fillingsegmentationanálise de séries temporaissensoriamento remoto multifontecubo de dadospreenchimento de lacunassegmentaçãoA promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology.Uma solução promissora para suprimir a ausência de dados de observações da Terra em imagens multi-espectrais, devido principalmente pela presença de nuvens, sombra de nuvens, defeitos na aquisição de dados e imagens parciais, tem sido a integração de dados multi-sensor. Contudo, deve-se harmonizar os dados provenientes de diferentes sensores para que estes possam ser comparáveis entre sí, além de que, lacunas de dados devem ser consideradas. Neste contexto, na presente pesquisa propõe-se um procedimento para construir um cubo de dados multispectral, multifonte e livre de lacunas, que envolve harmonização e reconstrução de dados da superfície terrestre. Para tanto, foram testados dois procedimentos de harmonização, um baseado em regressão linear e o segundo baseado em modelo linear de mistura espectral. Além disso, propoe-se um procedimento espaço-temporal para preenchimento de lacunas que não requer referência prévia da área. Foram desenvolvidas duas abordagens para preenchimento de lacunas, aplicadas serialmente. A primeira abordagem visa aprimorar um método baseado no contexto espacial para preencher lacunas oriundas de pequenas nuvens e defeitos do sensor Landsat-7/ETM+. A segunda abordagem de preenchimento de lacunas utiliza regiões homogêneas obtidas por meio de segmentação multitemporal para preencher as lacunas restantes do cubo de dados. As estratégias de preenchimento de lacunas são aplicadas em dois cubos de dados de imagem em duas áreas de estudo. Um cubo foi gerado a partir de um conjunto de dados composto por imagens Landsat-7/ETM+ e Landsat-8/OLI, e o segundo incluindo também imagens CBERS-4/MUX neste conjunto de dados. Para validar o procedimento de preenchimento de lacunas, foram simuladas lacunas artificiais nas imagens e, posteriormente, comparou-se as imagens originais com as imagens preenchidas. A abordagem baseada no fator de ponderação superou o método original para todas as bandas e apresentou R2 maior que 0,90 e um V IF com valores superiores a 0,97, enquanto manteve assintóticamente o custo computacional do algoritmo. As imagens resultantes utilizando o método proposto tiveram sua textura preservada, além de também ser capaz de detectar características estreitas nelas, por exemplo, estradas, áreas ribeirinhas e pequenos riachos. A segunda abordagem baseada na segmentação multitemporal, preencheu as lacunas restantes, um total de 43,64% de todo o cubo de dados. No entanto, os resultados obtidos nesta abordagem foram mais incertos e a textura das áreas estimadas é afetada, resultando em um preenchimento homogêneo. As áreas resultantes no processo de harmonização e reconstrução apresentaram-se bastante similares as originais, apresentando um UIQI de pelo menos 0,92 e V IF variando entre 0,6 e 0,7, demonstrando a viabilidade da metodologia.http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:55:59Zoai:urlib.net:sid.inpe.br/mtc-m21c/2019/03.20.17.01.06-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:00.103Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
dc.title.alternative.pt.fl_str_mv Preenchimento de lacunas em cubo de dados de sensoriamento remoto ótico multifonte por meio de segmentação multinível e segmentação multitemporal
title Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
spellingShingle Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
Rennan de Freitas Bezerra Marujo
title_short Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
title_full Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
title_fullStr Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
title_full_unstemmed Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
title_sort Gap filling of optical remote sensing multi-source data cube through multi-scale and multi-temporal segmentation
author Rennan de Freitas Bezerra Marujo
author_facet Rennan de Freitas Bezerra Marujo
author_role author
dc.contributor.advisor1.fl_str_mv Leila Maria Garcia Fonseca
dc.contributor.referee1.fl_str_mv Sidnei João Siqueira Sant'Anna
dc.contributor.referee2.fl_str_mv Thales Sehn Körting
dc.contributor.referee3.fl_str_mv Giovanni de Araujo Boggione
dc.contributor.referee4.fl_str_mv Silvia Helena Modenese Gorla da Silva
dc.contributor.author.fl_str_mv Rennan de Freitas Bezerra Marujo
contributor_str_mv Leila Maria Garcia Fonseca
Sidnei João Siqueira Sant'Anna
Thales Sehn Körting
Giovanni de Araujo Boggione
Silvia Helena Modenese Gorla da Silva
dc.description.abstract.por.fl_txt_mv A promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology.
Uma solução promissora para suprimir a ausência de dados de observações da Terra em imagens multi-espectrais, devido principalmente pela presença de nuvens, sombra de nuvens, defeitos na aquisição de dados e imagens parciais, tem sido a integração de dados multi-sensor. Contudo, deve-se harmonizar os dados provenientes de diferentes sensores para que estes possam ser comparáveis entre sí, além de que, lacunas de dados devem ser consideradas. Neste contexto, na presente pesquisa propõe-se um procedimento para construir um cubo de dados multispectral, multifonte e livre de lacunas, que envolve harmonização e reconstrução de dados da superfície terrestre. Para tanto, foram testados dois procedimentos de harmonização, um baseado em regressão linear e o segundo baseado em modelo linear de mistura espectral. Além disso, propoe-se um procedimento espaço-temporal para preenchimento de lacunas que não requer referência prévia da área. Foram desenvolvidas duas abordagens para preenchimento de lacunas, aplicadas serialmente. A primeira abordagem visa aprimorar um método baseado no contexto espacial para preencher lacunas oriundas de pequenas nuvens e defeitos do sensor Landsat-7/ETM+. A segunda abordagem de preenchimento de lacunas utiliza regiões homogêneas obtidas por meio de segmentação multitemporal para preencher as lacunas restantes do cubo de dados. As estratégias de preenchimento de lacunas são aplicadas em dois cubos de dados de imagem em duas áreas de estudo. Um cubo foi gerado a partir de um conjunto de dados composto por imagens Landsat-7/ETM+ e Landsat-8/OLI, e o segundo incluindo também imagens CBERS-4/MUX neste conjunto de dados. Para validar o procedimento de preenchimento de lacunas, foram simuladas lacunas artificiais nas imagens e, posteriormente, comparou-se as imagens originais com as imagens preenchidas. A abordagem baseada no fator de ponderação superou o método original para todas as bandas e apresentou R2 maior que 0,90 e um V IF com valores superiores a 0,97, enquanto manteve assintóticamente o custo computacional do algoritmo. As imagens resultantes utilizando o método proposto tiveram sua textura preservada, além de também ser capaz de detectar características estreitas nelas, por exemplo, estradas, áreas ribeirinhas e pequenos riachos. A segunda abordagem baseada na segmentação multitemporal, preencheu as lacunas restantes, um total de 43,64% de todo o cubo de dados. No entanto, os resultados obtidos nesta abordagem foram mais incertos e a textura das áreas estimadas é afetada, resultando em um preenchimento homogêneo. As áreas resultantes no processo de harmonização e reconstrução apresentaram-se bastante similares as originais, apresentando um UIQI de pelo menos 0,92 e V IF variando entre 0,6 e 0,7, demonstrando a viabilidade da metodologia.
description A promising solution to solve the lack of Earths surface observation problem on multi-spectral images consists in integrating multi-sensor data. However data must be harmonized before its measures can be comparable and a treatment for gaps (due to cloud cover, sensor defects, and partial images) must be considered. In this context, the present research proposes a methodology to build a gap-free multi-source and multi-spectral data cube, which involves Earth Observation data harmonization and reconstruction. To accomplish this, we tested two harmonization procedures, one based on linear regression and the other based on linear unmixing model, and propose a procedure for spatial-temporal gap-filling, which does not require previous reference. Two approaches for filling gaps are developed. The first one aims at improving a method based on spatial context of close-in-time images to fill small clouds and stripe effects, where in our adaptation a weighting factor is used for each pixel within segments. The second one uses a multi-temporal segmentation to fill the remaining gaps. The gap-filling strategies are applied on two image data cubes composed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images. To validate the gap-filling procedure, we simulate artificial gaps in the images and, subsequently we compare the original image with the gap-filled ones. Our approach based on weighting factor surpassed the original method for all bands, presenting R2 greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the algorithm cost. It also preserved the texture on reconstructed images, and also was capable of detecting narrow features, e.g., roads, riparian areas, and small streams. The second approach based on multi-temporal segmentation filled all the remaining gaps, 43.64% of the entire data cube. However, the estimated values are more affected by uncertainty and the image texture is affected, resulting in a homogeneous gap-filling. The harmonized and reconstructed areas were very similar to the original data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the final method, showing the feasibility of the methodology.
publishDate 2019
dc.date.issued.fl_str_mv 2019-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01
url http://urlib.net/sid.inpe.br/mtc-m21c/2019/03.20.17.01
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Computação Aplicada
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Computação Aplicada
contributor_advisor1_txtF_mv Leila Maria Garcia Fonseca
_version_ 1706809362314428416