Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Vetor (Online) |
Texto Completo: | https://periodicos.furg.br/vetor/article/view/16444 |
Resumo: | Many real-world problems can be mathematically modeled as Multiobjective Optimization Problems (MOPs), as they involve multiple conflicting objective functions that must be minimized simultaneously. MOPs with more than 3 objective functions are called Many-objective Optimization Problems (MaOPs). MOPs are typically solved through Multiobjective Evolutionary Algorithms (MOEAs), which can obtain a set of non-dominated optimal solutions, known as a Pareto front, in a single run. The MOEA Based on Decomposition (MOEA/D) is one of the most efficient, dividing a MOP into several single-objective subproblems and optimizing them simultaneously. This study evaluated the performance of MOEA/D and four variants representing the state of the art in the literature (MOEA/DD, MOEA/D-DE, MOEA/D-DU, and MOEA/D-AWA) in MOPs and MaOPs. Computational experiments were conducted using benchmark MOPs and MaOPs from the DTLZ suite considering 3 and 5 objective functions. Additionally, a statistical analysis, including the Wilcoxon test, was performed to evaluate the results obtained in the IGD+ performance indicator. The Hypervolume performance indicator was also considered in the combined Pareto front, formed by all solutions obtained by each MOEA. The experiments revealed that MOEA/DD performed best in IGD+, and MOEA/D-AWA achieved the highest Hypervolume in the combined Pareto front, while MOEA/D-DE registered the worst result in this set of problems. |
id |
FURG-7_1196b51bc937b660c5dfa34331a527e6 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.furg.br:article/16444 |
network_acronym_str |
FURG-7 |
network_name_str |
Vetor (Online) |
repository_id_str |
|
spelling |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization ProblemsComparando Algoritmos Evolutivos Baseados em Decomposição para Problemas de Otimização Multiobjetivo e com Muitos ObjetivosAlgoritmo EvolutivoDecomposiçãoOtimização MultiobjetivoEvolutionary AlgorithmDecompositionMultiobjective OptimizationEvolutionary AlgorithmDecompositionMultiobjective OptimizationMany real-world problems can be mathematically modeled as Multiobjective Optimization Problems (MOPs), as they involve multiple conflicting objective functions that must be minimized simultaneously. MOPs with more than 3 objective functions are called Many-objective Optimization Problems (MaOPs). MOPs are typically solved through Multiobjective Evolutionary Algorithms (MOEAs), which can obtain a set of non-dominated optimal solutions, known as a Pareto front, in a single run. The MOEA Based on Decomposition (MOEA/D) is one of the most efficient, dividing a MOP into several single-objective subproblems and optimizing them simultaneously. This study evaluated the performance of MOEA/D and four variants representing the state of the art in the literature (MOEA/DD, MOEA/D-DE, MOEA/D-DU, and MOEA/D-AWA) in MOPs and MaOPs. Computational experiments were conducted using benchmark MOPs and MaOPs from the DTLZ suite considering 3 and 5 objective functions. Additionally, a statistical analysis, including the Wilcoxon test, was performed to evaluate the results obtained in the IGD+ performance indicator. The Hypervolume performance indicator was also considered in the combined Pareto front, formed by all solutions obtained by each MOEA. The experiments revealed that MOEA/DD performed best in IGD+, and MOEA/D-AWA achieved the highest Hypervolume in the combined Pareto front, while MOEA/D-DE registered the worst result in this set of problems.Muitos problemas oriundos do mundo real podem ser modelados matematicamente como Problemas de Otimização Multiobjetivo (POMs), já que possuem diversas funções objetivo conflitantes entre si que devem ser minimizadas simultaneamente. POMs com mais de 3 funções objetivo recebem o nome de Problemas de Otimização com Muitos Objetivos (MaOPs, do inglês Many-objective Optimization Problems). Os POMs geralmente são resolvidos através de Algoritmos Evolutivos Multiobjetivos (MOEAs, do inglês Multiobjective Evolutionary Algorithms), os quais conseguem obter um conjunto de soluções ótimas não dominadas entre si, conhecidos como frente de Pareto, em uma única execução. O MOEA baseado em decomposição (MOEA/D) é um dos mais eficientes, o qual divide um POM em vários subproblemas monobjetivos otimizando-os ao mesmo tempo. Neste estudo foi realizada uma avaliação dos desempenhos do MOEA/D e quatro de suas variantes que representam o estado da arte da literatura (MOEA/DD, MOEA/D-DE, MOEA/D-DU e MOEA/D-AWA) em POMs e MaOPs. Foram conduzidos experimentos computacionais utilizando POMs e MaOPs benchmark do suite DTLZ considerando 3 e 5 funções objetivo. Além disso, foi realizada uma análise estatística que incluiu o teste de Wilcoxon para avaliar os resultados obtidos no indicador de desempenho IGD+. Também foi considerado o indicador de desempenho Hypervolume na frente de Pareto combinada, que é formada por todas as soluções obtidas por cada MOEA. Os experimentos revelaram que o MOEA/DD apresentou a melhor performance no IGD+ e o MOEA/D-AWA obteve o maior Hypervolume na frente de Pareto combinada, enquanto o MOEA/D-DE registrou o pior resultado nesse conjunto de problemas.Universidade Federal do Rio Grande2023-12-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1644410.14295/vetor.v33i2.16444VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 41-51VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 41-512358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/16444/10463Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessPeito, Marcela C. C.da Costa Vargas, Denis EmanuelWanner, Elizabeth Fialho2023-12-23T15:36:23Zoai:ojs.periodicos.furg.br:article/16444Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-12-23T15:36:23Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems Comparando Algoritmos Evolutivos Baseados em Decomposição para Problemas de Otimização Multiobjetivo e com Muitos Objetivos |
title |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems |
spellingShingle |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems Peito, Marcela C. C. Algoritmo Evolutivo Decomposição Otimização Multiobjetivo Evolutionary Algorithm Decomposition Multiobjective Optimization Evolutionary Algorithm Decomposition Multiobjective Optimization |
title_short |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems |
title_full |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems |
title_fullStr |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems |
title_full_unstemmed |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems |
title_sort |
Comparing Decomposition-Based Evolutionary Algorithms for Multi and Many-Objective Optimization Problems |
author |
Peito, Marcela C. C. |
author_facet |
Peito, Marcela C. C. da Costa Vargas, Denis Emanuel Wanner, Elizabeth Fialho |
author_role |
author |
author2 |
da Costa Vargas, Denis Emanuel Wanner, Elizabeth Fialho |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Peito, Marcela C. C. da Costa Vargas, Denis Emanuel Wanner, Elizabeth Fialho |
dc.subject.por.fl_str_mv |
Algoritmo Evolutivo Decomposição Otimização Multiobjetivo Evolutionary Algorithm Decomposition Multiobjective Optimization Evolutionary Algorithm Decomposition Multiobjective Optimization |
topic |
Algoritmo Evolutivo Decomposição Otimização Multiobjetivo Evolutionary Algorithm Decomposition Multiobjective Optimization Evolutionary Algorithm Decomposition Multiobjective Optimization |
description |
Many real-world problems can be mathematically modeled as Multiobjective Optimization Problems (MOPs), as they involve multiple conflicting objective functions that must be minimized simultaneously. MOPs with more than 3 objective functions are called Many-objective Optimization Problems (MaOPs). MOPs are typically solved through Multiobjective Evolutionary Algorithms (MOEAs), which can obtain a set of non-dominated optimal solutions, known as a Pareto front, in a single run. The MOEA Based on Decomposition (MOEA/D) is one of the most efficient, dividing a MOP into several single-objective subproblems and optimizing them simultaneously. This study evaluated the performance of MOEA/D and four variants representing the state of the art in the literature (MOEA/DD, MOEA/D-DE, MOEA/D-DU, and MOEA/D-AWA) in MOPs and MaOPs. Computational experiments were conducted using benchmark MOPs and MaOPs from the DTLZ suite considering 3 and 5 objective functions. Additionally, a statistical analysis, including the Wilcoxon test, was performed to evaluate the results obtained in the IGD+ performance indicator. The Hypervolume performance indicator was also considered in the combined Pareto front, formed by all solutions obtained by each MOEA. The experiments revealed that MOEA/DD performed best in IGD+, and MOEA/D-AWA achieved the highest Hypervolume in the combined Pareto front, while MOEA/D-DE registered the worst result in this set of problems. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-23 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/16444 10.14295/vetor.v33i2.16444 |
url |
https://periodicos.furg.br/vetor/article/view/16444 |
identifier_str_mv |
10.14295/vetor.v33i2.16444 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/16444/10463 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 2 (2023); 41-51 VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 2 (2023); 41-51 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Vetor (Online) |
collection |
Vetor (Online) |
repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
gmplatt@furg.br |
_version_ |
1832013283412934656 |