Beta-binomial/gamma-poisson regression models for repeated counts with random parameters
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | |
Language: | eng |
Source: | Repositório Institucional do FGV (FGV Repositório Digital) |
DOI: | 10.1214/10-BJPS118 |
Download full: | http://hdl.handle.net/10438/23234 http://dx.doi.org/10.1214/10-BJPS118 |
Summary: | Beta-binomial/Poisson models have been used by many authors to model multivariate count data. Lora and Singer [Stat. Med. 27 (2008) 3366-3381] extended such models to accommodate repeated multivariate count data with overdipersion in the binomial component. To overcome some of the limitations of that model, we consider a beta-binomial/gamma-Poisson alternative that also allows for both overdispersion and different covariances between the Poisson counts. We obtain maximum likelihood estimates for the parameters using a Newton-Raphson algorithm and compare both models in a practical example. |
id |
FGV_2e225cb064f95217beacfef69b7f547d |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/23234 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Lora, Mayra IvanoffSinger, Julio M.FGV2018-05-10T13:36:05Z2018-05-10T13:36:05Z2011-070013-0133 / 1468-0297http://hdl.handle.net/10438/23234http://dx.doi.org/10.1214/10-BJPS11810.1214/10-BJPS118000296130000006Singer, Julio/0000-0001-6515-9643Singer, Julio/C-1232-2013Beta-binomial/Poisson models have been used by many authors to model multivariate count data. Lora and Singer [Stat. Med. 27 (2008) 3366-3381] extended such models to accommodate repeated multivariate count data with overdipersion in the binomial component. To overcome some of the limitations of that model, we consider a beta-binomial/gamma-Poisson alternative that also allows for both overdispersion and different covariances between the Poisson counts. We obtain maximum likelihood estimates for the parameters using a Newton-Raphson algorithm and compare both models in a practical example.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazilp. 218-235engBrazilian Statistical AssociationBrazilian journal of probability and statisticsWeb of Sciencereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVBivariate countsLongitudinal dataOverdispersionRandom effectsRegression modelsTrialsNumberMatemáticaDistribuição binomialMatrizes randômicasBeta-binomial/gamma-poisson regression models for repeated counts with random parametersArticle (Journal/Review)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessTEXT000296130000006.pdf.txt000296130000006.pdf.txtExtracted texttext/plain40012https://repositorio.fgv.br/bitstreams/938faa75-e286-4aef-bdcf-6b196048ed79/downloadf17caf43d385f97edc73ec5adb98c639MD56ORIGINAL000296130000006.pdf000296130000006.pdfapplication/pdf143884https://repositorio.fgv.br/bitstreams/8da6be55-e6b2-4cd7-9865-9f90929ef39b/downloadadd5dfba07115bed0d882fbb274167daMD51THUMBNAIL000296130000006.pdf.jpg000296130000006.pdf.jpgGenerated Thumbnailimage/jpeg4760https://repositorio.fgv.br/bitstreams/0f8e25e1-27e6-4c9b-9d65-be8dfa237485/downloadae7a00e9875e938ce1e24950d03a6500MD5710438/232342023-11-07 22:19:13.636open.accessoai:repositorio.fgv.br:10438/23234https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-07T22:19:13Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters |
title |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters |
spellingShingle |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters Lora, Mayra Ivanoff Bivariate counts Longitudinal data Overdispersion Random effects Regression models Trials Number Matemática Distribuição binomial Matrizes randômicas |
title_short |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters |
title_full |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters |
title_fullStr |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters |
title_full_unstemmed |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters |
title_sort |
Beta-binomial/gamma-poisson regression models for repeated counts with random parameters |
author |
Lora, Mayra Ivanoff |
author_facet |
Lora, Mayra Ivanoff Singer, Julio M. |
author_role |
author |
author2 |
Singer, Julio M. |
author2_role |
author |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Lora, Mayra Ivanoff Singer, Julio M. |
dc.subject.eng.fl_str_mv |
Bivariate counts Longitudinal data Overdispersion Random effects Regression models Trials Number |
topic |
Bivariate counts Longitudinal data Overdispersion Random effects Regression models Trials Number Matemática Distribuição binomial Matrizes randômicas |
dc.subject.area.por.fl_str_mv |
Matemática |
dc.subject.bibliodata.por.fl_str_mv |
Distribuição binomial Matrizes randômicas |
description |
Beta-binomial/Poisson models have been used by many authors to model multivariate count data. Lora and Singer [Stat. Med. 27 (2008) 3366-3381] extended such models to accommodate repeated multivariate count data with overdipersion in the binomial component. To overcome some of the limitations of that model, we consider a beta-binomial/gamma-Poisson alternative that also allows for both overdispersion and different covariances between the Poisson counts. We obtain maximum likelihood estimates for the parameters using a Newton-Raphson algorithm and compare both models in a practical example. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-07 |
dc.date.accessioned.fl_str_mv |
2018-05-10T13:36:05Z |
dc.date.available.fl_str_mv |
2018-05-10T13:36:05Z |
dc.type.driver.fl_str_mv |
Article (Journal/Review) |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/23234 http://dx.doi.org/10.1214/10-BJPS118 |
dc.identifier.issn.none.fl_str_mv |
0013-0133 / 1468-0297 |
dc.identifier.doi.none.fl_str_mv |
10.1214/10-BJPS118 |
dc.identifier.WoS.none.fl_str_mv |
000296130000006 |
dc.identifier.orcid.none.fl_str_mv |
Singer, Julio/0000-0001-6515-9643 |
dc.identifier.researcherid.none.fl_str_mv |
Singer, Julio/C-1232-2013 |
identifier_str_mv |
0013-0133 / 1468-0297 10.1214/10-BJPS118 000296130000006 Singer, Julio/0000-0001-6515-9643 Singer, Julio/C-1232-2013 |
url |
http://hdl.handle.net/10438/23234 http://dx.doi.org/10.1214/10-BJPS118 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.eng.fl_str_mv |
Brazilian journal of probability and statistics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 218-235 |
dc.publisher.none.fl_str_mv |
Brazilian Statistical Association |
publisher.none.fl_str_mv |
Brazilian Statistical Association |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/938faa75-e286-4aef-bdcf-6b196048ed79/download https://repositorio.fgv.br/bitstreams/8da6be55-e6b2-4cd7-9865-9f90929ef39b/download https://repositorio.fgv.br/bitstreams/0f8e25e1-27e6-4c9b-9d65-be8dfa237485/download |
bitstream.checksum.fl_str_mv |
f17caf43d385f97edc73ec5adb98c639 add5dfba07115bed0d882fbb274167da ae7a00e9875e938ce1e24950d03a6500 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1827846585337249792 |