Export Ready — 

Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels

Bibliographic Details
Main Author: Teixeira,Renan de Souza
Publication Date: 2021
Other Authors: Chalhub,Daniel José Nahid Mansur, Massari,Pollyana de L
Format: Article
Language: eng
Source: REM - International Engineering Journal
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2021000100059
Summary: Abstract The atmospheric boundary layer (ABL) flow occurs due to the interaction between the Earth’s surface and atmosphere, and it usually happens under thermal stratification. Therefore, in order to emulate this phenomenon, atmospheric wind tunnels need appropriate devices, such as spires and cubical roughness elements, at the entrance of the wind tunnel to create atmospheric characteristics for the analysis. In the current study, numerical and experimental investigations of the thermally stratified boundary layer are performed. The experimental data are measured using Inmetro’s atmospheric wind tunnel. Two different spires set configurations and inlet velocities are considered. Moreover, the compressible Navier-Stokes equations using the k-epsilon turbulence model are computed by OpenFOAM opensource software. The simulated results and measured data presented a good overall agreement and showed that the proposed configuration provides the desired thermal and dynamic boundary layer necessary for the study of ABL.
id FG-1_ebe29055fe9f1659b80d50f65bafdde9
oai_identifier_str oai:scielo:S2448-167X2021000100059
network_acronym_str FG-1
network_name_str REM - International Engineering Journal
repository_id_str
spelling Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnelsatmospheric boundary layerReynolds-averaged Navier-Stokesheat transfercomputational fluid dynamicsAbstract The atmospheric boundary layer (ABL) flow occurs due to the interaction between the Earth’s surface and atmosphere, and it usually happens under thermal stratification. Therefore, in order to emulate this phenomenon, atmospheric wind tunnels need appropriate devices, such as spires and cubical roughness elements, at the entrance of the wind tunnel to create atmospheric characteristics for the analysis. In the current study, numerical and experimental investigations of the thermally stratified boundary layer are performed. The experimental data are measured using Inmetro’s atmospheric wind tunnel. Two different spires set configurations and inlet velocities are considered. Moreover, the compressible Navier-Stokes equations using the k-epsilon turbulence model are computed by OpenFOAM opensource software. The simulated results and measured data presented a good overall agreement and showed that the proposed configuration provides the desired thermal and dynamic boundary layer necessary for the study of ABL.Fundação Gorceix2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2021000100059REM - International Engineering Journal v.74 n.1 2021reponame:REM - International Engineering Journalinstname:Fundação Gorceix (FG)instacron:FG10.1590/0370-44672019740099info:eu-repo/semantics/openAccessTeixeira,Renan de SouzaChalhub,Daniel José Nahid MansurMassari,Pollyana de Leng2021-01-11T00:00:00Zoai:scielo:S2448-167X2021000100059Revistahttps://www.rem.com.br/?lang=pt-brPRIhttps://old.scielo.br/oai/scielo-oai.php||editor@rem.com.br2448-167X2448-167Xopendoar:2021-01-11T00:00REM - International Engineering Journal - Fundação Gorceix (FG)false
dc.title.none.fl_str_mv Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
title Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
spellingShingle Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
Teixeira,Renan de Souza
atmospheric boundary layer
Reynolds-averaged Navier-Stokes
heat transfer
computational fluid dynamics
title_short Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
title_full Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
title_fullStr Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
title_full_unstemmed Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
title_sort Numerical and experimental evaluation of the thermally stratified atmospheric boundary layer in wind tunnels
author Teixeira,Renan de Souza
author_facet Teixeira,Renan de Souza
Chalhub,Daniel José Nahid Mansur
Massari,Pollyana de L
author_role author
author2 Chalhub,Daniel José Nahid Mansur
Massari,Pollyana de L
author2_role author
author
dc.contributor.author.fl_str_mv Teixeira,Renan de Souza
Chalhub,Daniel José Nahid Mansur
Massari,Pollyana de L
dc.subject.por.fl_str_mv atmospheric boundary layer
Reynolds-averaged Navier-Stokes
heat transfer
computational fluid dynamics
topic atmospheric boundary layer
Reynolds-averaged Navier-Stokes
heat transfer
computational fluid dynamics
description Abstract The atmospheric boundary layer (ABL) flow occurs due to the interaction between the Earth’s surface and atmosphere, and it usually happens under thermal stratification. Therefore, in order to emulate this phenomenon, atmospheric wind tunnels need appropriate devices, such as spires and cubical roughness elements, at the entrance of the wind tunnel to create atmospheric characteristics for the analysis. In the current study, numerical and experimental investigations of the thermally stratified boundary layer are performed. The experimental data are measured using Inmetro’s atmospheric wind tunnel. Two different spires set configurations and inlet velocities are considered. Moreover, the compressible Navier-Stokes equations using the k-epsilon turbulence model are computed by OpenFOAM opensource software. The simulated results and measured data presented a good overall agreement and showed that the proposed configuration provides the desired thermal and dynamic boundary layer necessary for the study of ABL.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2021000100059
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2021000100059
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0370-44672019740099
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Fundação Gorceix
publisher.none.fl_str_mv Fundação Gorceix
dc.source.none.fl_str_mv REM - International Engineering Journal v.74 n.1 2021
reponame:REM - International Engineering Journal
instname:Fundação Gorceix (FG)
instacron:FG
instname_str Fundação Gorceix (FG)
instacron_str FG
institution FG
reponame_str REM - International Engineering Journal
collection REM - International Engineering Journal
repository.name.fl_str_mv REM - International Engineering Journal - Fundação Gorceix (FG)
repository.mail.fl_str_mv ||editor@rem.com.br
_version_ 1754734691857989632