APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES

Bibliographic Details
Main Author: Furtuoso, Gabriel Dilly Vieira
Publication Date: 2022
Other Authors: Santos, Marcos dos, Quintal, Renato Santiago
Format: Article
Language: por
Source: Revista Gestão em Análise (Online)
Download full: https://periodicos.unichristus.edu.br/gestao/article/view/4006
Summary: Future events prediction in an assertive way has been the object of analysis by several researchers, especially in the financial area. In this context, there are countless possibilities for using this tool in the decision-making process of investment managers and analysts. This article aim to propose a recurrent neural network model based on the study of time series, oriented to the prediction and estimation of the price of shares on the Brazilian stock exchange. In this context, the present study enables the characterization of directions of financial trends and the prediction of prices from the training of the neural network, using real data from the Brazilian stock exchange in the year 2010. Regarding the methodology, the present research can be classified as applied, explanatory, in terms of its objectives, and quantitative in terms of its approach. The results obtained in this study reveal the ability to learn complex problems and, consequently, the possibility of application in other areas.
id CHRISTUS-3_e4c2963f55ab1d780a10c0dbe15aa02f
oai_identifier_str oai:ojs.emnuvens.com.br:article/4006
network_acronym_str CHRISTUS-3
network_name_str Revista Gestão em Análise (Online)
repository_id_str
spelling APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICESAPLICAÇÃO DE REDES NEURAIS RECORRENTES NA PREVISÃO DE SÉRIES TEMPORAIS: UM ESTUDO DE PREÇOS DE AÇÕES DA BOLSA DE VALORESdeep learningrecurrent neural networksprice predictionstock exchangedeep learningredes neurais recorrentespredição de preçosbolsa de valoresFuture events prediction in an assertive way has been the object of analysis by several researchers, especially in the financial area. In this context, there are countless possibilities for using this tool in the decision-making process of investment managers and analysts. This article aim to propose a recurrent neural network model based on the study of time series, oriented to the prediction and estimation of the price of shares on the Brazilian stock exchange. In this context, the present study enables the characterization of directions of financial trends and the prediction of prices from the training of the neural network, using real data from the Brazilian stock exchange in the year 2010. Regarding the methodology, the present research can be classified as applied, explanatory, in terms of its objectives, and quantitative in terms of its approach. The results obtained in this study reveal the ability to learn complex problems and, consequently, the possibility of application in other areas.A predição de eventos futuros de modo assertivo tem sido o objeto de análise de diversos pesquisadores, sobretudo na área financeira. Nesse contexto, são inúmeras as possibilidades do emprego desse ferramental no processo decisório de gestores e analistas de investimentos. O objetivo deste artigo é propor um modelo de rede neural recorrente com base no estudo de séries temporais, orientado à predição e estimação do preço de ações da Bolsa de Valores brasileira. Nesse contexto, o presente estudo viabiliza a caracterização de direções de tendências financeiras e a predição dos preços por meio do treinamento da rede neural, empregando dados reais da Bolsa de Valores brasileira a partir do ano de 2010. No que concerne à metodologia, a presente pesquisa pode ser classificada como aplicada, explicativa, quanto a seus objetivos, e quantitativa quanto à forma de abordagem. Os resultados obtidos neste estudo revelam a capacidade de aprendizado de problemas complexos e, consequentemente, a possibilidade de aplicação em outras áreas.Instituto para o Desenvolvimento da Educacao2022-05-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unichristus.edu.br/gestao/article/view/400610.12662/2359-618xregea.v11i2.p25-36.2022Journal Of Management Analysis; Vol. 11 No. 2 (2022); 25-36Revista Gestão em Análise; Vol. 11 Núm. 2 (2022); 25-36Revista Gestão em Análise; Vol. 11 No 2 (2022); 25-36Revista Gestão em Análise; v. 11 n. 2 (2022); 25-362359-618X1984-729710.12662/2359-618xregea.v11i2.2022reponame:Revista Gestão em Análise (Online)instname:Centro Universitário Christus (Unichristus)instacron:CHRISTUSporhttps://periodicos.unichristus.edu.br/gestao/article/view/4006/1576Copyright (c) 2022 Revista Gestão em Análiseinfo:eu-repo/semantics/openAccessFurtuoso, Gabriel Dilly VieiraSantos, Marcos dosQuintal, Renato Santiago2022-08-15T17:06:34Zoai:ojs.emnuvens.com.br:article/4006Revistahttp://periodicos.unichristus.edu.br/index.php/gestao/indexPRIhttps://periodicos.unichristus.edu.br/gestao/oairevistagestaoemanalise@unichristus.edu.br2359-618X1984-7297opendoar:2022-08-15T17:06:34Revista Gestão em Análise (Online) - Centro Universitário Christus (Unichristus)false
dc.title.none.fl_str_mv APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
APLICAÇÃO DE REDES NEURAIS RECORRENTES NA PREVISÃO DE SÉRIES TEMPORAIS: UM ESTUDO DE PREÇOS DE AÇÕES DA BOLSA DE VALORES
title APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
spellingShingle APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
Furtuoso, Gabriel Dilly Vieira
deep learning
recurrent neural networks
price prediction
stock exchange
deep learning
redes neurais recorrentes
predição de preços
bolsa de valores
title_short APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
title_full APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
title_fullStr APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
title_full_unstemmed APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
title_sort APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
author Furtuoso, Gabriel Dilly Vieira
author_facet Furtuoso, Gabriel Dilly Vieira
Santos, Marcos dos
Quintal, Renato Santiago
author_role author
author2 Santos, Marcos dos
Quintal, Renato Santiago
author2_role author
author
dc.contributor.author.fl_str_mv Furtuoso, Gabriel Dilly Vieira
Santos, Marcos dos
Quintal, Renato Santiago
dc.subject.por.fl_str_mv deep learning
recurrent neural networks
price prediction
stock exchange
deep learning
redes neurais recorrentes
predição de preços
bolsa de valores
topic deep learning
recurrent neural networks
price prediction
stock exchange
deep learning
redes neurais recorrentes
predição de preços
bolsa de valores
description Future events prediction in an assertive way has been the object of analysis by several researchers, especially in the financial area. In this context, there are countless possibilities for using this tool in the decision-making process of investment managers and analysts. This article aim to propose a recurrent neural network model based on the study of time series, oriented to the prediction and estimation of the price of shares on the Brazilian stock exchange. In this context, the present study enables the characterization of directions of financial trends and the prediction of prices from the training of the neural network, using real data from the Brazilian stock exchange in the year 2010. Regarding the methodology, the present research can be classified as applied, explanatory, in terms of its objectives, and quantitative in terms of its approach. The results obtained in this study reveal the ability to learn complex problems and, consequently, the possibility of application in other areas.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-03
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.unichristus.edu.br/gestao/article/view/4006
10.12662/2359-618xregea.v11i2.p25-36.2022
url https://periodicos.unichristus.edu.br/gestao/article/view/4006
identifier_str_mv 10.12662/2359-618xregea.v11i2.p25-36.2022
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.unichristus.edu.br/gestao/article/view/4006/1576
dc.rights.driver.fl_str_mv Copyright (c) 2022 Revista Gestão em Análise
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Revista Gestão em Análise
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto para o Desenvolvimento da Educacao
publisher.none.fl_str_mv Instituto para o Desenvolvimento da Educacao
dc.source.none.fl_str_mv Journal Of Management Analysis; Vol. 11 No. 2 (2022); 25-36
Revista Gestão em Análise; Vol. 11 Núm. 2 (2022); 25-36
Revista Gestão em Análise; Vol. 11 No 2 (2022); 25-36
Revista Gestão em Análise; v. 11 n. 2 (2022); 25-36
2359-618X
1984-7297
10.12662/2359-618xregea.v11i2.2022
reponame:Revista Gestão em Análise (Online)
instname:Centro Universitário Christus (Unichristus)
instacron:CHRISTUS
instname_str Centro Universitário Christus (Unichristus)
instacron_str CHRISTUS
institution CHRISTUS
reponame_str Revista Gestão em Análise (Online)
collection Revista Gestão em Análise (Online)
repository.name.fl_str_mv Revista Gestão em Análise (Online) - Centro Universitário Christus (Unichristus)
repository.mail.fl_str_mv revistagestaoemanalise@unichristus.edu.br
_version_ 1849955952352034816