APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Other Authors: | , |
| Format: | Article |
| Language: | por |
| Source: | Revista Gestão em Análise (Online) |
| Download full: | https://periodicos.unichristus.edu.br/gestao/article/view/4006 |
Summary: | Future events prediction in an assertive way has been the object of analysis by several researchers, especially in the financial area. In this context, there are countless possibilities for using this tool in the decision-making process of investment managers and analysts. This article aim to propose a recurrent neural network model based on the study of time series, oriented to the prediction and estimation of the price of shares on the Brazilian stock exchange. In this context, the present study enables the characterization of directions of financial trends and the prediction of prices from the training of the neural network, using real data from the Brazilian stock exchange in the year 2010. Regarding the methodology, the present research can be classified as applied, explanatory, in terms of its objectives, and quantitative in terms of its approach. The results obtained in this study reveal the ability to learn complex problems and, consequently, the possibility of application in other areas. |
| id |
CHRISTUS-3_e4c2963f55ab1d780a10c0dbe15aa02f |
|---|---|
| oai_identifier_str |
oai:ojs.emnuvens.com.br:article/4006 |
| network_acronym_str |
CHRISTUS-3 |
| network_name_str |
Revista Gestão em Análise (Online) |
| repository_id_str |
|
| spelling |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICESAPLICAÇÃO DE REDES NEURAIS RECORRENTES NA PREVISÃO DE SÉRIES TEMPORAIS: UM ESTUDO DE PREÇOS DE AÇÕES DA BOLSA DE VALORESdeep learningrecurrent neural networksprice predictionstock exchangedeep learningredes neurais recorrentespredição de preçosbolsa de valoresFuture events prediction in an assertive way has been the object of analysis by several researchers, especially in the financial area. In this context, there are countless possibilities for using this tool in the decision-making process of investment managers and analysts. This article aim to propose a recurrent neural network model based on the study of time series, oriented to the prediction and estimation of the price of shares on the Brazilian stock exchange. In this context, the present study enables the characterization of directions of financial trends and the prediction of prices from the training of the neural network, using real data from the Brazilian stock exchange in the year 2010. Regarding the methodology, the present research can be classified as applied, explanatory, in terms of its objectives, and quantitative in terms of its approach. The results obtained in this study reveal the ability to learn complex problems and, consequently, the possibility of application in other areas.A predição de eventos futuros de modo assertivo tem sido o objeto de análise de diversos pesquisadores, sobretudo na área financeira. Nesse contexto, são inúmeras as possibilidades do emprego desse ferramental no processo decisório de gestores e analistas de investimentos. O objetivo deste artigo é propor um modelo de rede neural recorrente com base no estudo de séries temporais, orientado à predição e estimação do preço de ações da Bolsa de Valores brasileira. Nesse contexto, o presente estudo viabiliza a caracterização de direções de tendências financeiras e a predição dos preços por meio do treinamento da rede neural, empregando dados reais da Bolsa de Valores brasileira a partir do ano de 2010. No que concerne à metodologia, a presente pesquisa pode ser classificada como aplicada, explicativa, quanto a seus objetivos, e quantitativa quanto à forma de abordagem. Os resultados obtidos neste estudo revelam a capacidade de aprendizado de problemas complexos e, consequentemente, a possibilidade de aplicação em outras áreas.Instituto para o Desenvolvimento da Educacao2022-05-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unichristus.edu.br/gestao/article/view/400610.12662/2359-618xregea.v11i2.p25-36.2022Journal Of Management Analysis; Vol. 11 No. 2 (2022); 25-36Revista Gestão em Análise; Vol. 11 Núm. 2 (2022); 25-36Revista Gestão em Análise; Vol. 11 No 2 (2022); 25-36Revista Gestão em Análise; v. 11 n. 2 (2022); 25-362359-618X1984-729710.12662/2359-618xregea.v11i2.2022reponame:Revista Gestão em Análise (Online)instname:Centro Universitário Christus (Unichristus)instacron:CHRISTUSporhttps://periodicos.unichristus.edu.br/gestao/article/view/4006/1576Copyright (c) 2022 Revista Gestão em Análiseinfo:eu-repo/semantics/openAccessFurtuoso, Gabriel Dilly VieiraSantos, Marcos dosQuintal, Renato Santiago2022-08-15T17:06:34Zoai:ojs.emnuvens.com.br:article/4006Revistahttp://periodicos.unichristus.edu.br/index.php/gestao/indexPRIhttps://periodicos.unichristus.edu.br/gestao/oairevistagestaoemanalise@unichristus.edu.br2359-618X1984-7297opendoar:2022-08-15T17:06:34Revista Gestão em Análise (Online) - Centro Universitário Christus (Unichristus)false |
| dc.title.none.fl_str_mv |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES APLICAÇÃO DE REDES NEURAIS RECORRENTES NA PREVISÃO DE SÉRIES TEMPORAIS: UM ESTUDO DE PREÇOS DE AÇÕES DA BOLSA DE VALORES |
| title |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES |
| spellingShingle |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES Furtuoso, Gabriel Dilly Vieira deep learning recurrent neural networks price prediction stock exchange deep learning redes neurais recorrentes predição de preços bolsa de valores |
| title_short |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES |
| title_full |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES |
| title_fullStr |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES |
| title_full_unstemmed |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES |
| title_sort |
APPLICATION OF RECURRENT NEURAL NETWORKS IN THE PROVISION OF TIME SERIES: A STUDY OF STOCK EXCHANGE STOCK PRICES |
| author |
Furtuoso, Gabriel Dilly Vieira |
| author_facet |
Furtuoso, Gabriel Dilly Vieira Santos, Marcos dos Quintal, Renato Santiago |
| author_role |
author |
| author2 |
Santos, Marcos dos Quintal, Renato Santiago |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Furtuoso, Gabriel Dilly Vieira Santos, Marcos dos Quintal, Renato Santiago |
| dc.subject.por.fl_str_mv |
deep learning recurrent neural networks price prediction stock exchange deep learning redes neurais recorrentes predição de preços bolsa de valores |
| topic |
deep learning recurrent neural networks price prediction stock exchange deep learning redes neurais recorrentes predição de preços bolsa de valores |
| description |
Future events prediction in an assertive way has been the object of analysis by several researchers, especially in the financial area. In this context, there are countless possibilities for using this tool in the decision-making process of investment managers and analysts. This article aim to propose a recurrent neural network model based on the study of time series, oriented to the prediction and estimation of the price of shares on the Brazilian stock exchange. In this context, the present study enables the characterization of directions of financial trends and the prediction of prices from the training of the neural network, using real data from the Brazilian stock exchange in the year 2010. Regarding the methodology, the present research can be classified as applied, explanatory, in terms of its objectives, and quantitative in terms of its approach. The results obtained in this study reveal the ability to learn complex problems and, consequently, the possibility of application in other areas. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-05-03 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://periodicos.unichristus.edu.br/gestao/article/view/4006 10.12662/2359-618xregea.v11i2.p25-36.2022 |
| url |
https://periodicos.unichristus.edu.br/gestao/article/view/4006 |
| identifier_str_mv |
10.12662/2359-618xregea.v11i2.p25-36.2022 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://periodicos.unichristus.edu.br/gestao/article/view/4006/1576 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Revista Gestão em Análise info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2022 Revista Gestão em Análise |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Instituto para o Desenvolvimento da Educacao |
| publisher.none.fl_str_mv |
Instituto para o Desenvolvimento da Educacao |
| dc.source.none.fl_str_mv |
Journal Of Management Analysis; Vol. 11 No. 2 (2022); 25-36 Revista Gestão em Análise; Vol. 11 Núm. 2 (2022); 25-36 Revista Gestão em Análise; Vol. 11 No 2 (2022); 25-36 Revista Gestão em Análise; v. 11 n. 2 (2022); 25-36 2359-618X 1984-7297 10.12662/2359-618xregea.v11i2.2022 reponame:Revista Gestão em Análise (Online) instname:Centro Universitário Christus (Unichristus) instacron:CHRISTUS |
| instname_str |
Centro Universitário Christus (Unichristus) |
| instacron_str |
CHRISTUS |
| institution |
CHRISTUS |
| reponame_str |
Revista Gestão em Análise (Online) |
| collection |
Revista Gestão em Análise (Online) |
| repository.name.fl_str_mv |
Revista Gestão em Análise (Online) - Centro Universitário Christus (Unichristus) |
| repository.mail.fl_str_mv |
revistagestaoemanalise@unichristus.edu.br |
| _version_ |
1849955952352034816 |