Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , |
Format: | Article |
Language: | por |
Source: | Revista de Estudos Interdisciplinares |
Download full: | https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972 |
Summary: | The global demand for coffee increases every year, and Brazil is one of the largest producers worldwide. With the high volume of production, there is a growing need to improve the quality of the product due to the demands of both national and international markets. However, pests such as the coffee borer (Leucoptera coffeella) and rust (Hemileia vastatrix) cause significant damage to coffee plantations, leading to annual crop losses. Several methods and techniques have been developed and applied to assess infestation levels and control these pests. Among these techniques are the use of computer vision and convolutional neural networks (CNN). Thus, the goal of this work was to develop a computational tool to correctly identify the presence of pests, reducing evaluation time, the evaluator's error, and labor costs. The accuracy of the developed methods ranged from 99.67% to 97.00%. |
id |
CEEINTER-1_a919e5c90319bde9d6b0568e8ff8989c |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/972 |
network_acronym_str |
CEEINTER-1 |
network_name_str |
Revista de Estudos Interdisciplinares |
repository_id_str |
|
spelling |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural NetworksIdentificación de Bicho-Mineiro y de Oxidación en el Cafeto Utilizando Procesamiento Digital de Imágenes y Redes Neuronales ConvolucionalesIDENTIFICAÇÃO DE BICHO-MINEIRO E DE FERRUGEM NO CAFEEIRO UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS CONVOLUCIONAISDeep LearningVisão ComputacionalRede Neural ConvolucionalLeucoptera CoffeellaHemileia VastatrixInteligência artificialDeep LearningComputer VisionConvolutional Neural NetworkLeucoptera Coffeella Hemileia VastatrixArtificial Intelligence Aprendizaje profundoVisión por computadorRed Neuronal ConvolucionalLeucoptera Coffeella Hemileia VastatrixInteligencia ArtificialThe global demand for coffee increases every year, and Brazil is one of the largest producers worldwide. With the high volume of production, there is a growing need to improve the quality of the product due to the demands of both national and international markets. However, pests such as the coffee borer (Leucoptera coffeella) and rust (Hemileia vastatrix) cause significant damage to coffee plantations, leading to annual crop losses. Several methods and techniques have been developed and applied to assess infestation levels and control these pests. Among these techniques are the use of computer vision and convolutional neural networks (CNN). Thus, the goal of this work was to develop a computational tool to correctly identify the presence of pests, reducing evaluation time, the evaluator's error, and labor costs. The accuracy of the developed methods ranged from 99.67% to 97.00%.La demanda mundial de café aumenta cada año, y Brasil es uno de los mayores productores globales. Con el elevado volumen de producción, existe una creciente necesidad de mejorar la calidad del producto debido a los requisitos de los mercados nacional e internacional. Sin embargo, plagas como el bicho mineiro (Leucoptera coffeella) y la roya (Hemileia vastatrix) causan grandes daños en las plantaciones de café, lo que resulta en pérdidas de la cosecha anualmente. Se han desarrollado y aplicado varios métodos y técnicas para evaluar el nivel de infestación y controlar estas plagas. Entre estas técnicas se encuentran el uso de visión computacional y redes neuronales convolucionales (CNN). Así, el objetivo de este trabajo fue el desarrollo de una herramienta computacional para identificar correctamente la presencia de plagas, reduciendo el tiempo de evaluación, el error del evaluador y los gastos con mano de obra. La precisión de los métodos desarrollados estuvo entre el 99,67% y el 97,00%.A demanda do mundo por café aumenta a cada ano, e o Brasil é um dos maiores produtores globais. Com o elevado volume de produção, há uma necessidade crescente de melhoria da qualidade do produto devido às exigências dos mercados nacional e internacional. Porém, pragas como o bicho mineiro (Leucoptera coffeella) e a ferrugem (Hemileia vastatrix) causam grandes danos em plantações de café, resultando em perdas da cultura anualmente. Vários métodos e técnicas vêm sendo desenvolvidas e aplicadas para avaliação do nível de infestação e controle destas pragas. Entre essas técnicas estão o uso de visão computacional e rede neural convolucional (CNN). Assim, o objetivo deste trabalho foi o desenvolvimento de uma ferramenta computacional para identificar corretamente a presença de pragas, reduzindo o tempo de avaliação, o erro do avaliador e os gastos com mão de obra. A acurácia dos métodos desenvolvidos ficou entre 99,67% e 97,00%.Editora CEEINTER2024-10-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/97210.56579/rei.v6i3.972Interdisciplinary Studies Journal; Vol. 6 No. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27Revista de Estudios Interdisciplinarios; Vol. 6 Núm. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27Revista de Estudos Interdisciplinares ; v. 6 n. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-272674-870310.56579/rei.v6i3reponame:Revista de Estudos Interdisciplinaresinstname:Centro de Estudos Interdisciplinares - CEEINTERinstacron:CEEINTERporhttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972/1329Copyright (c) 2024 Revista de Estudos Interdisciplinares https://creativecommons.org/licenses/by/4.0/deed.pt-brinfo:eu-repo/semantics/openAccess BRAGA VENTURA , CHARLY OLIVEIRA RODRIGUES, ÉRICK ANDALÓ MENDES DE CARVALHO, VANESSA CARVALHO IZIDORO, SANDRO2024-12-07T17:08:58Zoai:ojs.pkp.sfu.ca:article/972Revistahttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinarPRIhttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/oaiceeinter01@gmail.com || atendimento@ceeinter.com.br || editora@ceeinter.com.br2674-87032674-8703opendoar:2024-12-07T17:08:58Revista de Estudos Interdisciplinares - Centro de Estudos Interdisciplinares - CEEINTERfalse |
dc.title.none.fl_str_mv |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks Identificación de Bicho-Mineiro y de Oxidación en el Cafeto Utilizando Procesamiento Digital de Imágenes y Redes Neuronales Convolucionales IDENTIFICAÇÃO DE BICHO-MINEIRO E DE FERRUGEM NO CAFEEIRO UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS CONVOLUCIONAIS |
title |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks |
spellingShingle |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks BRAGA VENTURA , CHARLY Deep Learning Visão Computacional Rede Neural Convolucional Leucoptera Coffeella Hemileia Vastatrix Inteligência artificial Deep Learning Computer Vision Convolutional Neural Network Leucoptera Coffeella Hemileia Vastatrix Artificial Intelligence Aprendizaje profundo Visión por computador Red Neuronal Convolucional Leucoptera Coffeella Hemileia Vastatrix Inteligencia Artificial |
title_short |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks |
title_full |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks |
title_fullStr |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks |
title_full_unstemmed |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks |
title_sort |
Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks |
author |
BRAGA VENTURA , CHARLY |
author_facet |
BRAGA VENTURA , CHARLY OLIVEIRA RODRIGUES, ÉRICK ANDALÓ MENDES DE CARVALHO, VANESSA CARVALHO IZIDORO, SANDRO |
author_role |
author |
author2 |
OLIVEIRA RODRIGUES, ÉRICK ANDALÓ MENDES DE CARVALHO, VANESSA CARVALHO IZIDORO, SANDRO |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
BRAGA VENTURA , CHARLY OLIVEIRA RODRIGUES, ÉRICK ANDALÓ MENDES DE CARVALHO, VANESSA CARVALHO IZIDORO, SANDRO |
dc.subject.por.fl_str_mv |
Deep Learning Visão Computacional Rede Neural Convolucional Leucoptera Coffeella Hemileia Vastatrix Inteligência artificial Deep Learning Computer Vision Convolutional Neural Network Leucoptera Coffeella Hemileia Vastatrix Artificial Intelligence Aprendizaje profundo Visión por computador Red Neuronal Convolucional Leucoptera Coffeella Hemileia Vastatrix Inteligencia Artificial |
topic |
Deep Learning Visão Computacional Rede Neural Convolucional Leucoptera Coffeella Hemileia Vastatrix Inteligência artificial Deep Learning Computer Vision Convolutional Neural Network Leucoptera Coffeella Hemileia Vastatrix Artificial Intelligence Aprendizaje profundo Visión por computador Red Neuronal Convolucional Leucoptera Coffeella Hemileia Vastatrix Inteligencia Artificial |
description |
The global demand for coffee increases every year, and Brazil is one of the largest producers worldwide. With the high volume of production, there is a growing need to improve the quality of the product due to the demands of both national and international markets. However, pests such as the coffee borer (Leucoptera coffeella) and rust (Hemileia vastatrix) cause significant damage to coffee plantations, leading to annual crop losses. Several methods and techniques have been developed and applied to assess infestation levels and control these pests. Among these techniques are the use of computer vision and convolutional neural networks (CNN). Thus, the goal of this work was to develop a computational tool to correctly identify the presence of pests, reducing evaluation time, the evaluator's error, and labor costs. The accuracy of the developed methods ranged from 99.67% to 97.00%. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972 10.56579/rei.v6i3.972 |
url |
https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972 |
identifier_str_mv |
10.56579/rei.v6i3.972 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972/1329 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2024 Revista de Estudos Interdisciplinares https://creativecommons.org/licenses/by/4.0/deed.pt-br info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2024 Revista de Estudos Interdisciplinares https://creativecommons.org/licenses/by/4.0/deed.pt-br |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora CEEINTER |
publisher.none.fl_str_mv |
Editora CEEINTER |
dc.source.none.fl_str_mv |
Interdisciplinary Studies Journal; Vol. 6 No. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27 Revista de Estudios Interdisciplinarios; Vol. 6 Núm. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27 Revista de Estudos Interdisciplinares ; v. 6 n. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27 2674-8703 10.56579/rei.v6i3 reponame:Revista de Estudos Interdisciplinares instname:Centro de Estudos Interdisciplinares - CEEINTER instacron:CEEINTER |
instname_str |
Centro de Estudos Interdisciplinares - CEEINTER |
instacron_str |
CEEINTER |
institution |
CEEINTER |
reponame_str |
Revista de Estudos Interdisciplinares |
collection |
Revista de Estudos Interdisciplinares |
repository.name.fl_str_mv |
Revista de Estudos Interdisciplinares - Centro de Estudos Interdisciplinares - CEEINTER |
repository.mail.fl_str_mv |
ceeinter01@gmail.com || atendimento@ceeinter.com.br || editora@ceeinter.com.br |
_version_ |
1832111063554850816 |