Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks

Detalhes bibliográficos
Autor(a) principal: BRAGA VENTURA , CHARLY
Data de Publicação: 2024
Outros Autores: OLIVEIRA RODRIGUES, ÉRICK, ANDALÓ MENDES DE CARVALHO, VANESSA, CARVALHO IZIDORO, SANDRO
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Estudos Interdisciplinares
Texto Completo: https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972
Resumo: The global demand for coffee increases every year, and Brazil is one of the largest producers worldwide. With the high volume of production, there is a growing need to improve the quality of the product due to the demands of both national and international markets. However, pests such as the coffee borer (Leucoptera coffeella) and rust (Hemileia vastatrix) cause significant damage to coffee plantations, leading to annual crop losses. Several methods and techniques have been developed and applied to assess infestation levels and control these pests. Among these techniques are the use of computer vision and convolutional neural networks (CNN). Thus, the goal of this work was to develop a computational tool to correctly identify the presence of pests, reducing evaluation time, the evaluator's error, and labor costs. The accuracy of the developed methods ranged from 99.67% to 97.00%.
id CEEINTER-1_a919e5c90319bde9d6b0568e8ff8989c
oai_identifier_str oai:ojs.pkp.sfu.ca:article/972
network_acronym_str CEEINTER-1
network_name_str Revista de Estudos Interdisciplinares
repository_id_str
spelling Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural NetworksIdentificación de Bicho-Mineiro y de Oxidación en el Cafeto Utilizando Procesamiento Digital de Imágenes y Redes Neuronales ConvolucionalesIDENTIFICAÇÃO DE BICHO-MINEIRO E DE FERRUGEM NO CAFEEIRO UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS CONVOLUCIONAISDeep LearningVisão ComputacionalRede Neural ConvolucionalLeucoptera CoffeellaHemileia VastatrixInteligência artificialDeep LearningComputer VisionConvolutional Neural NetworkLeucoptera Coffeella Hemileia VastatrixArtificial Intelligence Aprendizaje profundoVisión por computadorRed Neuronal ConvolucionalLeucoptera Coffeella Hemileia VastatrixInteligencia ArtificialThe global demand for coffee increases every year, and Brazil is one of the largest producers worldwide. With the high volume of production, there is a growing need to improve the quality of the product due to the demands of both national and international markets. However, pests such as the coffee borer (Leucoptera coffeella) and rust (Hemileia vastatrix) cause significant damage to coffee plantations, leading to annual crop losses. Several methods and techniques have been developed and applied to assess infestation levels and control these pests. Among these techniques are the use of computer vision and convolutional neural networks (CNN). Thus, the goal of this work was to develop a computational tool to correctly identify the presence of pests, reducing evaluation time, the evaluator's error, and labor costs. The accuracy of the developed methods ranged from 99.67% to 97.00%.La demanda mundial de café aumenta cada año, y Brasil es uno de los mayores productores globales. Con el elevado volumen de producción, existe una creciente necesidad de mejorar la calidad del producto debido a los requisitos de los mercados nacional e internacional. Sin embargo, plagas como el bicho mineiro (Leucoptera coffeella) y la roya (Hemileia vastatrix) causan grandes daños en las plantaciones de café, lo que resulta en pérdidas de la cosecha anualmente. Se han desarrollado y aplicado varios métodos y técnicas para evaluar el nivel de infestación y controlar estas plagas. Entre estas técnicas se encuentran el uso de visión computacional y redes neuronales convolucionales (CNN). Así, el objetivo de este trabajo fue el desarrollo de una herramienta computacional para identificar correctamente la presencia de plagas, reduciendo el tiempo de evaluación, el error del evaluador y los gastos con mano de obra. La precisión de los métodos desarrollados estuvo entre el 99,67% y el 97,00%.A demanda do mundo por café aumenta a cada ano, e o Brasil é um dos maiores produtores globais. Com o elevado volume de produção, há uma necessidade crescente de melhoria da qualidade do produto devido às exigências dos mercados nacional e internacional. Porém, pragas como o bicho mineiro (Leucoptera coffeella) e a ferrugem (Hemileia vastatrix) causam grandes danos em plantações de café, resultando em perdas da cultura anualmente. Vários métodos e técnicas vêm sendo desenvolvidas e aplicadas para avaliação do nível de infestação e controle destas pragas. Entre essas técnicas estão o uso de visão computacional e rede neural convolucional (CNN). Assim, o objetivo deste trabalho foi o desenvolvimento de uma ferramenta computacional para identificar corretamente a presença de pragas, reduzindo o tempo de avaliação, o erro do avaliador e os gastos com mão de obra. A acurácia dos métodos desenvolvidos ficou entre 99,67% e 97,00%.Editora CEEINTER2024-10-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/97210.56579/rei.v6i3.972Interdisciplinary Studies Journal; Vol. 6 No. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27Revista de Estudios Interdisciplinarios; Vol. 6 Núm. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27Revista de Estudos Interdisciplinares ; v. 6 n. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-272674-870310.56579/rei.v6i3reponame:Revista de Estudos Interdisciplinaresinstname:Centro de Estudos Interdisciplinares - CEEINTERinstacron:CEEINTERporhttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972/1329Copyright (c) 2024 Revista de Estudos Interdisciplinares https://creativecommons.org/licenses/by/4.0/deed.pt-brinfo:eu-repo/semantics/openAccess BRAGA VENTURA , CHARLY OLIVEIRA RODRIGUES, ÉRICK ANDALÓ MENDES DE CARVALHO, VANESSA CARVALHO IZIDORO, SANDRO2024-12-07T17:08:58Zoai:ojs.pkp.sfu.ca:article/972Revistahttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinarPRIhttps://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/oaiceeinter01@gmail.com || atendimento@ceeinter.com.br || editora@ceeinter.com.br2674-87032674-8703opendoar:2024-12-07T17:08:58Revista de Estudos Interdisciplinares - Centro de Estudos Interdisciplinares - CEEINTERfalse
dc.title.none.fl_str_mv Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
Identificación de Bicho-Mineiro y de Oxidación en el Cafeto Utilizando Procesamiento Digital de Imágenes y Redes Neuronales Convolucionales
IDENTIFICAÇÃO DE BICHO-MINEIRO E DE FERRUGEM NO CAFEEIRO UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS CONVOLUCIONAIS
title Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
spellingShingle Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
BRAGA VENTURA , CHARLY
Deep Learning
Visão Computacional
Rede Neural Convolucional
Leucoptera Coffeella
Hemileia Vastatrix
Inteligência artificial
Deep Learning
Computer Vision
Convolutional Neural Network
Leucoptera Coffeella
Hemileia Vastatrix
Artificial Intelligence
Aprendizaje profundo
Visión por computador
Red Neuronal Convolucional
Leucoptera Coffeella
Hemileia Vastatrix
Inteligencia Artificial
title_short Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
title_full Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
title_fullStr Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
title_full_unstemmed Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
title_sort Identification of Coffee Borer and Rust in Coffee Plants Using Digital Image Processing and Convolutional Neural Networks
author BRAGA VENTURA , CHARLY
author_facet BRAGA VENTURA , CHARLY
OLIVEIRA RODRIGUES, ÉRICK
ANDALÓ MENDES DE CARVALHO, VANESSA
CARVALHO IZIDORO, SANDRO
author_role author
author2 OLIVEIRA RODRIGUES, ÉRICK
ANDALÓ MENDES DE CARVALHO, VANESSA
CARVALHO IZIDORO, SANDRO
author2_role author
author
author
dc.contributor.author.fl_str_mv BRAGA VENTURA , CHARLY
OLIVEIRA RODRIGUES, ÉRICK
ANDALÓ MENDES DE CARVALHO, VANESSA
CARVALHO IZIDORO, SANDRO
dc.subject.por.fl_str_mv Deep Learning
Visão Computacional
Rede Neural Convolucional
Leucoptera Coffeella
Hemileia Vastatrix
Inteligência artificial
Deep Learning
Computer Vision
Convolutional Neural Network
Leucoptera Coffeella
Hemileia Vastatrix
Artificial Intelligence
Aprendizaje profundo
Visión por computador
Red Neuronal Convolucional
Leucoptera Coffeella
Hemileia Vastatrix
Inteligencia Artificial
topic Deep Learning
Visão Computacional
Rede Neural Convolucional
Leucoptera Coffeella
Hemileia Vastatrix
Inteligência artificial
Deep Learning
Computer Vision
Convolutional Neural Network
Leucoptera Coffeella
Hemileia Vastatrix
Artificial Intelligence
Aprendizaje profundo
Visión por computador
Red Neuronal Convolucional
Leucoptera Coffeella
Hemileia Vastatrix
Inteligencia Artificial
description The global demand for coffee increases every year, and Brazil is one of the largest producers worldwide. With the high volume of production, there is a growing need to improve the quality of the product due to the demands of both national and international markets. However, pests such as the coffee borer (Leucoptera coffeella) and rust (Hemileia vastatrix) cause significant damage to coffee plantations, leading to annual crop losses. Several methods and techniques have been developed and applied to assess infestation levels and control these pests. Among these techniques are the use of computer vision and convolutional neural networks (CNN). Thus, the goal of this work was to develop a computational tool to correctly identify the presence of pests, reducing evaluation time, the evaluator's error, and labor costs. The accuracy of the developed methods ranged from 99.67% to 97.00%.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972
10.56579/rei.v6i3.972
url https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972
identifier_str_mv 10.56579/rei.v6i3.972
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ceeinter.com.br/revistadeestudosinterdisciplinar/article/view/972/1329
dc.rights.driver.fl_str_mv Copyright (c) 2024 Revista de Estudos Interdisciplinares
https://creativecommons.org/licenses/by/4.0/deed.pt-br
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2024 Revista de Estudos Interdisciplinares
https://creativecommons.org/licenses/by/4.0/deed.pt-br
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora CEEINTER
publisher.none.fl_str_mv Editora CEEINTER
dc.source.none.fl_str_mv Interdisciplinary Studies Journal; Vol. 6 No. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27
Revista de Estudios Interdisciplinarios; Vol. 6 Núm. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27
Revista de Estudos Interdisciplinares ; v. 6 n. 3 (2024): REVISTA DE ESTUDOS INTERDISCIPLINARES ; 01-27
2674-8703
10.56579/rei.v6i3
reponame:Revista de Estudos Interdisciplinares
instname:Centro de Estudos Interdisciplinares - CEEINTER
instacron:CEEINTER
instname_str Centro de Estudos Interdisciplinares - CEEINTER
instacron_str CEEINTER
institution CEEINTER
reponame_str Revista de Estudos Interdisciplinares
collection Revista de Estudos Interdisciplinares
repository.name.fl_str_mv Revista de Estudos Interdisciplinares - Centro de Estudos Interdisciplinares - CEEINTER
repository.mail.fl_str_mv ceeinter01@gmail.com || atendimento@ceeinter.com.br || editora@ceeinter.com.br
_version_ 1832111063554850816