Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Brazilian Journal of Medical and Biological Research |
Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000500615 |
Summary: | Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. |
id |
ABDC-1_c9dca6c03333c8f5de5df39df465fe5e |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2018000500615 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusionCell adhesionPerfusionShear stressStem cellElectrospun scaffoldsCell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion.Associação Brasileira de Divulgação Científica2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000500615Brazilian Journal of Medical and Biological Research v.51 n.5 2018reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20186754info:eu-repo/semantics/openAccessPaim,A.Braghirolli,D.I.Cardozo,N.S.M.Pranke,P.Tessaro,I.C.eng2019-03-19T00:00:00Zoai:scielo:S0100-879X2018000500615Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2019-03-19T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion |
title |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion |
spellingShingle |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion Paim,A. Cell adhesion Perfusion Shear stress Stem cell Electrospun scaffolds |
title_short |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion |
title_full |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion |
title_fullStr |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion |
title_full_unstemmed |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion |
title_sort |
Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion |
author |
Paim,A. |
author_facet |
Paim,A. Braghirolli,D.I. Cardozo,N.S.M. Pranke,P. Tessaro,I.C. |
author_role |
author |
author2 |
Braghirolli,D.I. Cardozo,N.S.M. Pranke,P. Tessaro,I.C. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Paim,A. Braghirolli,D.I. Cardozo,N.S.M. Pranke,P. Tessaro,I.C. |
dc.subject.por.fl_str_mv |
Cell adhesion Perfusion Shear stress Stem cell Electrospun scaffolds |
topic |
Cell adhesion Perfusion Shear stress Stem cell Electrospun scaffolds |
description |
Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000500615 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000500615 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1414-431x20186754 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.51 n.5 2018 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302946318745600 |