Export Ready — 

Influence of the tool edge geometry on specific cutting energy at high-speed cutting

Bibliographic Details
Main Author: Rodrigues,Alessandro R.
Publication Date: 2007
Other Authors: Coelho,Reginaldo T.
Format: Article
Language: eng
Source: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000300007
Summary: This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1º in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (~0.20 mm). Probable adiabatic shear occurred on chip segmentation at HSC.
id ABCM-2_0b183f64c647a3a4685bb0a85ea5ec6d
oai_identifier_str oai:scielo:S1678-58782007000300007
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Influence of the tool edge geometry on specific cutting energy at high-speed cuttingspecific cutting energytool edge geometryhigh-speed cuttingThis paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1º in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (~0.20 mm). Probable adiabatic shear occurred on chip segmentation at HSC.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2007-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000300007Journal of the Brazilian Society of Mechanical Sciences and Engineering v.29 n.3 2007reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782007000300007info:eu-repo/semantics/openAccessRodrigues,Alessandro R.Coelho,Reginaldo T.eng2007-10-22T00:00:00Zoai:scielo:S1678-58782007000300007Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2007-10-22T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Influence of the tool edge geometry on specific cutting energy at high-speed cutting
title Influence of the tool edge geometry on specific cutting energy at high-speed cutting
spellingShingle Influence of the tool edge geometry on specific cutting energy at high-speed cutting
Rodrigues,Alessandro R.
specific cutting energy
tool edge geometry
high-speed cutting
title_short Influence of the tool edge geometry on specific cutting energy at high-speed cutting
title_full Influence of the tool edge geometry on specific cutting energy at high-speed cutting
title_fullStr Influence of the tool edge geometry on specific cutting energy at high-speed cutting
title_full_unstemmed Influence of the tool edge geometry on specific cutting energy at high-speed cutting
title_sort Influence of the tool edge geometry on specific cutting energy at high-speed cutting
author Rodrigues,Alessandro R.
author_facet Rodrigues,Alessandro R.
Coelho,Reginaldo T.
author_role author
author2 Coelho,Reginaldo T.
author2_role author
dc.contributor.author.fl_str_mv Rodrigues,Alessandro R.
Coelho,Reginaldo T.
dc.subject.por.fl_str_mv specific cutting energy
tool edge geometry
high-speed cutting
topic specific cutting energy
tool edge geometry
high-speed cutting
description This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1º in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (~0.20 mm). Probable adiabatic shear occurred on chip segmentation at HSC.
publishDate 2007
dc.date.none.fl_str_mv 2007-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000300007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000300007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782007000300007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.29 n.3 2007
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734680966430720