Export Ready — 

Periodic complex map germs and foliations

Bibliographic Details
Main Author: CÂMARA,LEONARDO M.
Publication Date: 2017
Other Authors: SCÁRDUA,BRUNO A.
Format: Article
Language: eng
Source: Anais da Academia Brasileira de Ciências (Online)
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563
Summary: Abstract In this paper we study topological and analytical conditions on the orbits of a germ of diffeomorphism in the complex plane in order to obtain periodicity. In particular, we give a simple proof of a finiteness criteria for groups of analytic diffeomorphisms, stated in Brochero Martínez 2003. As an application, we derive some consequences about the integrability of complex vector fields in dimension three in a neighborhood of a singular point.
id ABC-1_94ac4b68d73205793b9f4f93c5ff851f
oai_identifier_str oai:scielo:S0001-37652017000602563
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Periodic complex map germs and foliationsComplex germs of diffeomorphimssingular holomorphic foliationsintegrability of vector fieldsclosed orbitsAbstract In this paper we study topological and analytical conditions on the orbits of a germ of diffeomorphism in the complex plane in order to obtain periodicity. In particular, we give a simple proof of a finiteness criteria for groups of analytic diffeomorphisms, stated in Brochero Martínez 2003. As an application, we derive some consequences about the integrability of complex vector fields in dimension three in a neighborhood of a singular point.Academia Brasileira de Ciências2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563Anais da Academia Brasileira de Ciências v.89 n.4 2017reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201720170233info:eu-repo/semantics/openAccessCÂMARA,LEONARDO M.SCÁRDUA,BRUNO A.eng2017-12-13T00:00:00Zoai:scielo:S0001-37652017000602563Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2017-12-13T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Periodic complex map germs and foliations
title Periodic complex map germs and foliations
spellingShingle Periodic complex map germs and foliations
CÂMARA,LEONARDO M.
Complex germs of diffeomorphims
singular holomorphic foliations
integrability of vector fields
closed orbits
title_short Periodic complex map germs and foliations
title_full Periodic complex map germs and foliations
title_fullStr Periodic complex map germs and foliations
title_full_unstemmed Periodic complex map germs and foliations
title_sort Periodic complex map germs and foliations
author CÂMARA,LEONARDO M.
author_facet CÂMARA,LEONARDO M.
SCÁRDUA,BRUNO A.
author_role author
author2 SCÁRDUA,BRUNO A.
author2_role author
dc.contributor.author.fl_str_mv CÂMARA,LEONARDO M.
SCÁRDUA,BRUNO A.
dc.subject.por.fl_str_mv Complex germs of diffeomorphims
singular holomorphic foliations
integrability of vector fields
closed orbits
topic Complex germs of diffeomorphims
singular holomorphic foliations
integrability of vector fields
closed orbits
description Abstract In this paper we study topological and analytical conditions on the orbits of a germ of diffeomorphism in the complex plane in order to obtain periodicity. In particular, we give a simple proof of a finiteness criteria for groups of analytic diffeomorphisms, stated in Brochero Martínez 2003. As an application, we derive some consequences about the integrability of complex vector fields in dimension three in a neighborhood of a singular point.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000602563
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-3765201720170233
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.89 n.4 2017
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302864054812672